
TUDOOR Attack: Systematically Exploring and Exploiting Logic Vulnerabilities
in DNS Response Pre-processing with Malformed Packets

Xiang Li¶, Wei Xu¶, Baojun Liu¶, Mingming Zhang¶‡, Zhou Li†�, Jia Zhang¶‡,
Deliang Chang£, Xiaofeng Zheng¶£, Chuhan Wang¶, Jianjun Chen¶‡, Haixin Duan¶‡§�, and Qi Li¶�

¶Tsinghua University, †University of California, Irvine, ‡Zhongguancun Laboratory
§Quan Cheng Laboratory, £QI-ANXIN Technology Research Institute, �Corresponding Author(s)

Abstract—DNS can be compared to a game of chess in that its
rules are simple, yet the possibilities it presents are endless.
While the fundamental rules of DNS are straightforward, DNS
implementations can be extremely complex. In this study,
we intend to explore the complexities and vulnerabilities in
DNS response pre-processing by systematically analyzing DNS
RFCs and DNS software implementations. We present the
discovery of three new types of logic vulnerabilities, leading
to the proposal of three novel attacks, namely the TUDOOR
attack. These attacks involve the use of malformed DNS
response packets to carry out DNS cache poisoning, denial-
of-service, and resource consuming attacks. By performing
comprehensive experiments, we demonstrate the attack’s feasi-
bility and significant real-world impacts of TUDOOR. In total,
24 mainstream DNS software, including BIND, PowerDNS,
and Microsoft DNS, are affected by TUDOOR. Attackers can
instigate cache poisoning and denial-of-service attacks against
vulnerable resolvers using a handful of crafted packets within
1 second or circumvent the query limit to deplete resolution
resources (e.g., CPU). Besides, to determine the vulnerable
resolver population in the wild, we collect and evaluate 16
popular Wi-Fi routers, 6 prevalent router OSes, 42 public
DNS services, and around 1.8M open DNS resolvers. Our
measurement results indicate that TUDOOR could exploit 7
routers (OSes), 18 public DNS services, and 424,652 (23.1%)
open DNS resolvers. Following the best practice of responsible
disclosure, we have reported these vulnerabilities to all affected
vendors, and 18 of them, including BIND, Chrome, Cloudflare,
and Microsoft, have acknowledged our findings and discussed
mitigation solutions with us. Furthermore, 33 CVE IDs are
assigned to our discovered vulnerabilities, and we provide an
online detection tool as one of the mitigation measures. Our
research highlights the urgent need for standardization of DNS
response pre-processing logic to enhance the security of DNS.

1. Introduction

The Domain Name System (DNS) serves as a crucial
component of the Internet infrastructure, translating human-
readable domain names to machine-readable IP addresses
and vice versa. DNS is extensively used to access web-
sites and support fundamental security mechanisms, includ-

ing email communication [118], certificate validation [32],
blacklists [86], and sinkholing [6]. Consequently, DNS has
become a notorious target for various network attacks, e.g.,
DNS cache poisoning and Denial-of-Service (DoS) attacks.

The domain name resolution process consists of three
major components: the client-resolver side, which receives
queries and returns final answers; the internal portion, which
operates data and manages cache; and the resolver-server
side, which requests resource records and handles responses.
Prior work. Previous studies demonstrated that attackers
often employ DNS flood [31], [113] and random subdomain
attacks [67] to overwhelm the client-resolver side, resulting
in network bandwidth and resolution resource depletion and
thus reducing the availability of DNS services [15]. Recent
studies also revealed a series of vulnerabilities existing in the
internal portion of DNS resolvers, including flawed cache
management and update strategies [57], [62], [69], as well as
unexpected network side-channels [74], [75]. These vulnera-
bilities can result in cache poisoning and traffic amplification
attacks. As for the resolver-server side, few previous works
focused on the DNS response processing or only a fraction
of it, such as the cache poisoning model [35] and bailiwick
checking implementations [71], [103]. Until now, there has
been no systematic study attempting to understand the whole
DNS response pre-processing procedure and explore poten-
tial logic vulnerabilities.
Our study. To address this research gap, we systematically
reviewed DNS RFCs and “reverse engineered” 28 main-
stream DNS software, including BIND, Unbound, Knot,
and PowerDNS, by inspecting their source code and con-
ducting black-box testing. The in-depth analysis enabled
summarizing the general workflow of DNS response pre-
processing with state machines. Based on valuable insights
and states, we designed malformed DNS response pack-
ets for testing and identified different implementations of
DNS response pre-processing. The analysis uncovered three
novel logic vulnerabilities exploitable for cache poisoning
(DNSPOISONING), denial-of-service (DNSDOS), and re-
source consuming (DNSCONSUMING) attacks via injecting
malformed packets through DNS resolvers’ response receiv-
ing “door”, resulting in our proposed “TuDoor attack” (In
history, TuDoor, in Chinese characters 突门, was a hidden
door in the Great Wall for scouts to pass through [121]).

https://lixiang521.com/
https://netsec.ccert.edu.cn/chs/people/xuw21
https://netsec.ccert.edu.cn/chs/people/baojun
https://netsec.ccert.edu.cn/chs/people/zmm18
https://faculty.sites.uci.edu/zhouli/
https://netsec.ccert.edu.cn/chs/people/jiazhang/
https://research.qianxin.com/
https://netsec.ccert.edu.cn/
https://netsec.ccert.edu.cn/chs/people/wch
https://netsec.ccert.edu.cn/chs/people/jianjun/
https://netsec.ccert.edu.cn/people/duanhx/
https://netsec.ccert.edu.cn/people/qli/
https://www.tsinghua.edu.cn/en/
https://uci.edu/
https://www.qcl.edu.cn/
https://research.qianxin.com/

Specifically, we developed a state machine for repre-
senting DNS response pre-processing. While all software
attempted to await a time frame for normal responses, we
discovered that they failed to handle several corner cases of
malformed packets. The vulnerabilities in the state machine
could be exploited for VCP (cache poisoning), VDS (DoS),
and VRC (resource consuming) attacks (see Section 4). The
vulnerabilities can affect 24 DNS software in total. (i) VCP
provides a covert side-channel for pinpointing the source
port used for resolution, allowing the fastest cache poisoning
attack (DNSPOISONING) within only one second towards
arbitrary domains, including TLDs like .com and .net. (ii)
With VDS, attackers can conduct a DoS attack (DNSDOS)
on vulnerable resolvers and clients within one second, pre-
venting valid responses from SLDs’ or even TLDs’ servers
by sending a few crafted responses rather than occupying
network bandwidth. (iii) VRC enables DNSCONSUMING to
bypass the resolvers’ query limit employed for mitigating
attacks like [3], [83] and force more queries, resulting in
resource (such as CPU) consuming attacks. (see Section 5).

We also investigated the prevalence of vulnerable re-
solvers (see Section 6). We evaluated 16 prominent Wi-Fi
routers, 6 prevalent router operating systems, 42 prominent
public DNS services, and about 1.8 million open DNS
resolvers through Internet-wide scanning. Through exper-
iments with ethical considerations, we uncovered a sig-
nificant population of vulnerable resolvers. We identified
7 routers (OSes) that are vulnerable to cache poisoning
attacks, while one public DNS service (114DNS) is in-
fluenced by DNSPOISONING and 17 other public DNS
services are vulnerable to DNSDOS. Furthermore, we found
that 423,652 (23.1%) open resolvers are exploitable by the
TUDOOR attack. Our measurement results demonstrated the
real-world impact of the TUDOOR attack.
Disclosure and feedback. We have reported discovered
vulnerabilities to all the affected parties, including 22 DNS
software vendors, 18 public DNS service providers, 7 router
(OS) producers, and network operators (see Section 7). We
have received acknowledgments from 18 vendors, including
BIND, ChromeOS, Cloudflare, and Microsoft, and have
worked closely with them to develop mitigation strategies.
We are still waiting for responses from the other vendors.
To protect DNS resolvers from the TUDOOR attack, we also
provide a comprehensive set of mitigation solutions and de-
tection approaches. In addition, we release an online check-
ing tool that customers can use to examine their resolvers at
this website: https://test.tudoor.net. Our discovered vulnera-
bilities have been assigned 33 CVE IDs, and some vendors
have already released patched versions according to our
suggestions. In summary, our study calls for standardizing
the DNS response pre-processing logic and implementation,
as there is presently no rigorous specification.
Contributions. We make the following contributions:

• We provide an in-depth analysis of the DNS response
pre-processing logic, summarizing its generic workflow
and finite-state machine, and presenting various flawed
implementations.

Stub
Resolver

DNS
Forwarder

Recursive
Resolver

Authoritative
Nameserver

Application

Query

Response

Query

Response

Query

Response

…
…

Cache Cache Cache

Figure 1. General DNS resolver roles and domain name resolution process.

• We identify three novel types of DNS vulnerabilities in
the pre-processing logic and propose three correspond-
ing attacks, collectively named the TUDOOR attack.

• We conduct comprehensive experiments to evaluate
the population of vulnerable resolvers in the wild and
demonstrate TUDOOR’s real-world impact.

• We report our newly discovered vulnerabilities to all
affected vendors, along with detailed mitigation and
detection solutions.

2. Background

In this section, we provide an overview of DNS concepts
and several crucial resolution mechanisms. Additionally, we
discuss ICMP messages and their impact on the application.

2.1. DNS Overview

DNS concepts and resolution process. The Domain Name
System (DNS) serves to improve the usability of IP ap-
plications by providing domain name-to-IP address map-
pings, and vice versa. The DNS infrastructure comprises
two primary components: the DNS namespace and DNS
resolution. The DNS namespace is a distributed hierarchical
database consisting of zones separated by a period (“.”) that
is managed by authoritative nameservers at each level. Each
zone contains authoritative resource records for correspond-
ing domains, such as type A (IPv4 addresses) and AAAA (IPv6
addresses). The upper zone contains reference information
of all subzones underneath it, i.e., NS (nameservers) records.
Figure 3 shows several examples of resource records. For in-
stance, the domain example.com is made up of three zones:
the root zone “.”, the top-level domain (TLD) zone .com,
and the second-level domain (SLD) zone “example.com”.

Figure 1 illustrates the general DNS resolution process.
When the client browses a website such as example.com,
the IP application utilizes the OS application programming
interface (API), such as getaddrinfo() [28], to commu-
nicate with the stub resolver inside the TCP/IP stack, such
as systemd-resolved [105]. The stub resolver formulates
a DNS request to its pre-configured DNS forwarder, which
is often integrated into home or Wi-Fi routers [27], [60] to
improve resolution speed by sending DNS queries on behalf
of users. Upon receiving the request, the DNS forwarder for-
wards the request to the recursive resolver, which performs
the iterative DNS resolution process to retrieve the final
results. Specifically, the recursive resolver sends queries
from the root to TLD to SLD authoritative nameservers. The
upper nameserver returns referral information to inform the

http://test.tudoor.net

0

…
Source Address

Destination Address

IP
header

Source Port Destination Port

Length Checksum
UDP
header

Transaction ID(TXID) Q
R OpCode Flags Z RCODE

QDCOUNT

NSCOUNT

ANCOUNT

ARCOUNT

DNS
header

bit
16 17 21 25 28 32

Question Section w/o Resource Records in other sections

Figure 2. DNS packet format on UDP.

Question(QD) Section

Answer(AN) Section

Authority(NS) Section

Additional(AR) Section

example.com. NS ns.example.com.

ns.example.com. A e.x.a.m

www.example.com. A e.x.a.m

www.example.com. A

Figure 3. Exemplar DNS sections and resource records.

recursive resolver of the next “closer” nameserver. Finally,
the nameserver of SLD example.com replies with authorita-
tive data, and the resolution process is complete. If resolvers
are equipped with the cache mechanism, they will store the
response in the local cache databse for future use.
DNS packets. Originally specified in RFC 1034-1035 [81],
[82], DNS typically utilizes UDP to transmit query and
response payloads. A DNS packet consists of a 12-byte DNS
header and a DNS body, which is illustrated in Figure 2.
The DNS header records a transaction ID (TXID) value for
authentication, a QR flag that denotes a query or response
packet, and other fields such as the operation code (OpCode),
return code (RCODE), and the number of resource records.
Meanwhile, the DNS body carries question and answer data
and includes four sections that are shown in Figure 3. The
question section is present in both the query and response
packets, indicating the query name and type. The answer
section is utilized to return the final resolution results (with
AA in Flags) from the authoritative nameserver, whereas the
authority and additional sections provide the referral infor-
mation (with no AA in Flags) from the upper nameserver.

2.2. DNS Resolution Mechanisms

DNS resolvers process queries and responses in a similar
way. In the following section, we describe several crucial
resolution mechanisms involved in response processing.
DNS response processing. The DNS response processing
procedure proceeds as follows for each response that ar-
rives [82]. First, the response is parsed to ensure it conforms
to the valid DNS packet format. Second, the response is
compared to the current resolution request using the TXID.
Third, DNS data is handled based on specified standards and
rules, such as question matching and bailiwick rules [23],
[44]. Any invalid responses should be discarded. Finally,
resolvers consider the first valid DNS packet that arrives as
the final answer. If no valid reply is received, a ServFail
response is sent to clients. The above operation is a common
practice among DNS developers, as discussed in Section 4.

Despite the fact that DNS standards [82] require DNS
resolvers to discard malformed responses, no specific imple-

0

Type

Unused

IP Header and 8 Bytes of Original Datagram

ICMP

bit
16 32

Code Checksum
8

Figure 4. ICMP message format.

mentation guidelines are provided. In Section 4, we present
a comprehensive analysis of DNS response pre-processing
through empirical studies, including different software im-
plementations, and identify multiple logic vulnerabilities.
DNS query retransmission. After receiving a client’s re-
quest, the resolver transforms it into a query and sends it to
upstream servers on port 53. Subsequently, the resolver will
wait for a response within a specified timeout window. If the
response is invalid or fails to arrive within the allotted time
frame, the resolver will resend queries several times, using
previously sent or newly-constructed packets, until it reaches
the total resolution timeout limit and returns a ServFail
response [23], [82]. To prevent aggressive retransmission,
resolvers implement query detection approaches that restrict
the number of queries [3], [17]. For example, Knot Resolver
limits the number of retries to a maximum of 9 [63].
DNS negative caching. DNS caching reduces query latency
and overload by storing previously received DNS data, as
well as non-response results (negative caching) from resolu-
tion failures, such as “server failures”, “timeouts”, or “server
refused” [10], [23], [119]. In cases of resolution failures, the
RFC draft [119] recommends a maximum retry value of 2
and a typical timeout value ranging from 3 to 30 seconds. If
no valid answer is received, the negative response is cached
for at least 5 seconds and a ServFail response is returned.

2.3. ICMP Messages and Impact

The Internet Control Message Protocol (ICMP) is used
to report operational information and error messages to the
sender, which is specified in RFC 792 [90] for IPv4 and in
RFC 4443 [49] for IPv6. When a transmission error occurs
en route, the intermediate node or the receiver generates
an ICMP error message, which includes at least the four-
tuple (source address, destination address, source port, and
destination port) and the first 8 data octets of the original
datagram, as shown in Figure 4.

According to RFCs [22], [47], the OS kernel should
forward ICMP error messages to the application layer only
if the wrapped four-tuple corresponds to an existent socket;
then, the application (including DNS) is responsible for pro-
cessing the ICMP error message. For example, in the case of
a port unreachable error message, the resolver may close the
receiving connection or ignore it. However, none of the TCP,
UDP, and ICMP RFCs [22], [89], [90], [91] recommend
any validation checks on received ICMP error messages. In
2006, Gont et al. [46] demonstrated various ICMP attacks
against TCP, such as TCP connection reset. Nevertheless,
there has been little discussion of ICMP attacks on UDP,
especially for the application layers such as DNS [9].

In this paper, we present a comprehensive analysis and
testing of current DNS implementations on ICMP error mes-

DNS
Forwarder

Stub
Resolver

Recursive
Resolver

Authoritative
Nameserver

Application
Response Response

Query

Response

…
…

Cache Cache Cache

Attacker

Injecting malformed packets
earlier than legal responses

(from off-/on-path)

Initiating
DNS queries

Normal Resolution

Attack Procedure

Triggering vulnerabilities
Query Query

Three Target Resolvers

Figure 5. Threat model of the TUDOOR attack.

sage processing and identify huge differences. Specifically,
we use the ICMP Destination Unreachable Error message
(type 3) for testing, covering code 0 (Net Unreachable), code
1 (Host Unreachable), code 2 (Protocol Unreachable), and
code 3 (Port Unreachable).

3. TUDOOR Attack Overview

In this paper, we discover novel logical vulnerabilities
in DNS response pre-processing that facilitate the injection
of malformed packets into resolvers through a covert and
effective channel (see Section 4.3). This channel enables a
range of serious attacks, including cache poisoning, denial-
of-service, and resource consuming, which can be conducted
by attackers using our newly proposed techniques (see Sec-
tion 5). We refer to them as TuDoor attacks (a convert door).

In this section, here, we first describe the threat model of
the TUDOOR attack, and then dive deeper into the high-level
workflow of TUDOOR attacks. We leave more exploitation
and experimental details in Section 5.

3.1. Threat Model

The TUDOOR attack targets various resolver roles in
the DNS system, including stub resolvers, DNS forwarders,
and recursive resolvers. In this paper, we assume that an
adversary has the following capabilities: the ability to initiate
a DNS query to target resolver and the ability to obtain the
egress IP addresses of target resolver. The threat model of
TUDOOR attacks is illustrated in Figure 5.

For open resolvers distributed in the Internet, attackers
can directly send DNS queries targeting the resolver from
any location [101]. For DNS resolvers that serve limited net-
works, such as those located in home or enterprise networks,
attackers can collect vantage points from large-scale mea-
surement platforms [99] or residential proxy networks [73],
[79] to generate DNS queries. For stub resolvers, an attacker
can employ online advertisements and spam emails that
embed the attacker’s controlled domain and direct clients to
launch DNS queries. Notably, because TUDOOR primarily
exploits UDP response pre-possessing, attackers could ini-
tiate client queries via any connection type, including UDP,
TCP, HTTPS, and TLS. Particularly affected are responses
received via TCP, HTTPS, and TLS for Knot Resolver.

Prior to starting the TUDOOR attack, an adversary also
need to collect the egress IP address of the target resolver for
packet injection. To achieve this, an attacker could query the
target resolver or make the machine running a stub resolver
visit his or her own website in advance. The attacker can
then obtain the egress IP address from the perspective of his
or her authoritative nameserver.

Besides, in the cases of cache poisoning and DoS at-
tacks, the attacker is assumed to be off-path and needs to
spoof the source IP address of a malformed DNS response
packet. According to the latest statistics from CAIDA [26],
over 19% of the IPv4 ASes are classified as IP-spoofable,
making it still possible for an attacker to use any bullet-
proof hosting service [7] within these ASes to spoof the
source address. Specifically, for cache poisoning, we do not
consider resolvers that enable DNSSEC validation [14] and
0x20 encoding [36]. Regarding resource consuming attacks,
we assume that the attacker is on-path. Nonetheless, these
on-path attackers have limited packet operating capabilities
and can only control their own domains to send responses
like normal users. In addition, to ensure that malformed
packets are delivered to the target resolvers before legitimate
responses, we assume that the attacker can generate response
packets from a neighboring host. Later, we will show that
the TUDOOR attack is highly efficient.

3.2. Attack Workflow

In general, in the TUDOOR attack, an adversary starts
by initiating a DNS query towards the victim resolver (step
➀), followed by the injection of malformed packets (step ➁).
Finally, based on the triggered logic vulnerabilities of DNS
responses pre-processing (step ➂), the attacker launches one
of the following three TUDOOR attacks below.
DNSPOISONING: DNS cache poisoning attack. The vul-
nerability VCP opens up a covert side channel, which enables
an attacker to identify the source port for domain name
resolution without any guesswork. Once the attacker has
pinpointed the source port, he or she can easily poison arbi-
trary domains on the target resolver by simply brute-forcing
the TXID. This includes TLD domains like .com and .net.
Our subsequent experiments demonstrate the feasibility and
practicality of this attack, which affects mainstream DNS
software such as Microsoft DNS and can be carried out in
less than one second.
DNSDOS: DNS denial-of-service attack. To exploit the
vulnerability VDS, an attacker must send malicious DNS
response packets to the target resolver prior to the arrival
of the legal packets. These packets cover all source ports of
the target resolver. Due to the vulnerability in DNS response
pre-processing, software such as PowerDNS prematurely
terminates the normal resolution process that employs a hit
source port. As a result, the target resolver would consider
the remote authoritative nameserver to be unavailable, lead-
ing to DoS for itself, its clients, and future queries.
DNSCONSUMING: DNS resource consuming attack.
Typically, to prevent resource consuming, a fixed threshold
controls the retransmission of DNS queries. However, the

TXID
MatchingReceiving

Responses 1

Unmatched
Four-tuple

2

IP
Packet

IP
Packet

Other Responses (ICMP)

3

UDP/TCP
Packet

4

DNS
Payload

5

DNS
Header

QR=0 (Query) or Other DNS Header Errors

6

QD
Section

QD Section Format Error

7 8 9

AN/NS/AR
Section

Parsed
Data Processing

Parsed Data

AN/NS/AR Section Format Error

131210Receiving
Closed

Terminating
Resolution

11 Reaching
Query Limit

Not Reaching
Query Limit

Sending
Queries

0

Receiving
Timeout

Checking
UDP/TCP Layer

Null UDP/TCP Payload

UDP/TCP Payload < 12B

Unmatched TXID

Checking
Four-tuple

Processing
ICMP Packet

Checking
DNS Layer

Checking
DNS Header

Parsing
QD Section

Parsing AN,
NS, AR Section

Checking
TXID

Checking
Query Limit

Green Arrows:
Safe State Transitions

Red Arrows:
Vul. State Transitions

Dark Arrows:
Normal Operations

Blue Marks:
Crucial States

Figure 6. General state machine model of DNS response pre-processing (Except for the red dotted arrows).

vulnerability VRC allows on-path attackers to repeatedly send
malformed packets to the target resolver from their authori-
tative nameservers, thereby evading the retransmission limit
and exhausting the resolver’s resolution resources, including
CPU and UDP source ports. This type of vulnerability af-
fects software such as BIND, Unbound, and Knot Resolver.

4. Systematic Analysis of DNS Response Pre-
processing

According to DNS RFC documents [23], [81], [82],
the DNS resolution procedure can be divided into three
components: the “client-resolver” part that accepts requests
from clients and responds to them; the “resolver-server”
part, which sends queries from resolvers and processes
server responses; and the “internal operation” that processes
data and cache. Although the client-resolver and internal op-
eration parts could be exploited to conduct various attacks,
such as DDoS [16], [66], [96], [97] and cache injection [57],
[62], [69], the most notorious attacking target is still the
resolver-server side, whereby attackers use numerous newly
emerging techniques to perform the influential cache poi-
soning [5], [37], [50], [51], [52], [55], [56], [58], [61], [71],
[74], [75], [102], [104], [124] and DoS attacks [3], [4], [24],
[78], [83]. However, none of these studies provided an in-
depth analysis of the resolver-server component to determine
possible attack vectors, especially for the DNS response pre-
processing component, which is our primary area of focus.

In this section, we first present the generic and common
workflow of DNS response pre-processing by systematically
reviewing DNS-related RFCs [23], [81], [82] and “reverse-
engineering” 28 DNS software. Table 1 shows the DNS
software that we analyze, encompassing all DNS resolver
roles and mainstream software implementations (of latest
versions): 8 recursive resolvers, 10 DNS forwarders, 6 stub
resolvers, and 4 DNS programming libraries.

Considering complex and inconsistent DNS software
implementations [71], [103], we determine using a state

machine to present a comprehensive response pre-processing
logic similar to [38] analyzing TLS, and leveraging it to
discover vulnerabilities. Unlike [38], which employs state
machine learning, we primarily construct state machines
through line-by-line source code inspection and GDB de-
bugging to ensure their completeness. Due to the relative
simplicity of DNS response pre-processing, we can manu-
ally enumerate all states. Additionally, we combine states
showing similar behaviors and summarize a general model.

Through identified states, we design various malformed
packets to troubleshoot each software and monitor their run-
time behaviors and logs. Besides, we read official documents
for closed-source software like Microsoft DNS and MacOS
and test them using malformed packets constructed from
open-source software. The total core source code has ∼1.1M
lines, and it took us 4 to 5 weeks to review and test them.

After that, we detail response pre-processing differences
between each software. In the end, we summarize newly
discovered logic vulnerabilities that attackers could exploit
to launch various attacks, such as cache poisoning, denial-
of-service (DoS), and resource-consuming attacks. These
vulnerabilities enable attackers to launch the fastest-ever
cache poisoning or DoS attacks within a second and bypass
the query limit, which are distinct from previous attacks.

4.1. Generic Workflow of DNS Response Pre-
processing

As described in Section 2.2, regarding a DNS response
packet, all resolvers must receive it via a network socket,
parse it based on each network layer, check the format,
and then handle the parsed DNS data as per the specifi-
cations [23], [44]. We refer to the entire procedures be-
fore processing parsed DNS data as DNS response pre-
processing and present its generic workflow in Figure 6.
The whole pre-processing component operates as a finite-
state machine, depending on the input and output result. The

resolver transitions between various states and stops until it
obtains a valid response or the resolution terminates.

State 0⃝: receiving responses. After delivering the re-
solver’s query transformed from clients’ requests or gener-
ated internally to upstream servers, the resolver enters the
receiving response state, where it awaits incoming packets.

State 0⃝→ 1⃝ & 1⃝→ 0⃝. Upon the arrival of each in-
coming IP packet, the network kernel scrutinizes its four-
tuple (source address, destination address, source port, and
destination port) and designates the packet to a pre-existing
socket belonging to the API caller (i.e., the DNS resolver).
Any packet that consists of an unmatched four-tuple will be
rejected (goto state 0⃝, same as below).

State 1⃝→ 2⃝ & 2⃝→ 0⃝. When the network kernel
encounters an ICMP error message, it notifies the DNS
application with an error return code and leaves application
to decide on the subsequent action. Most DNS software
will ignore the message and proceed to state 0⃝. In such
situations, the four-tuple used in state 0⃝→ 1⃝ is embedded
in the ICMP payload, as we discussed in Section 2.3.

State 2⃝→ 3⃝ & 3⃝→ 4⃝ & 3⃝→ 0⃝ & 4⃝→ 0⃝. If the
UDP/TCP payload is either empty or less than 12 bytes (the
DNS header’s length), the packet must be discarded and the
resolver should wait for more promising responses.

State 4⃝→ 5⃝ & 5⃝→ 0⃝. For a valid-length DNS header,
resolvers must check the QR flag and reject the query packet
whose QR field is 0 when receiving responses.

State 5⃝→ 6⃝ & 6⃝→ 7⃝ & 6⃝→ 0⃝ & 7⃝→ 0⃝. For each
DNS response packet whose QR field is 1, resolvers should
parse QD, AN, NS, and AR sections in accordance with
their respective formats depicted in Figure 3 and exclude
malformed sections.

State 7⃝→ 8⃝ & 8⃝→ 0⃝ & 8⃝→ 9⃝. The final stage of
pre-processing involves TXID validation. Responses with a
wrong TXID shall be discarded, as they could potentially be
attack packets. In contrast, a response with a correct TXID
signifies the completion of DNS response pre-processing
and the initiation of data processing.

State 0⃝→ 10⃝ & 10⃝→ 11⃝. As mentioned in Section 2.2,
resolvers will await a short period to receive a promising
response. They will close the receiving socket if no valid
response is received within the specified time frame.

State 11⃝→ 12⃝ & 11⃝→ 13⃝. Due to the DNS retransmission
mechanism (explained in Section 2.2), the resolver will
check its internal query limit to determine whether to re-send
new queries (if the limit has not been reached) or terminate
the current resolution process (if the limit has been reached
or if there is no limit checking operation).

4.2. Software Implementations of DNS Response
Pre-processing

Here, we summarize the DNS response pre-processing
implementation differences from the generic workflow for
each analyzed software and illustrate their specific state
transitions in Figure 7. We discover that, for the majority
of state transitions, every software uses a similar processing
logic as Figure 6. Detail-wise, most software excluding Java

(Figure 7(n)) attempt to transition to state 0⃝ to continue
receiving promising responses from at least one of the state
1⃝ - 8⃝. It demonstrates that all developers have adhered

to the practice that resolvers should await a time frame
for any valid response. However, they implement different
operations for several specific response processing states,
such as state 2⃝ (ICMP error messages) and 4⃝ & 5⃝ (invalid
DNS headers). In summary, all state transitions denoted by
red dotted arrows in Figure 6 are vulnerable. Specifically,
each software employs different programming techniques to
design the receiving process (same to UDP and TCP).
Recursive resolvers tend to perform similarly to the generic
workflow and have fewer state transition variations than the
others. Only MaraDNS has no differences with Figure 6.

• BIND uses dns_dispatch_add [19] to register receiv-
ing functions and processes responses with dispatchers.
BIND employs udp_recv [21] for receiving UDP pack-
ets and calls udp_dispatch_getnext [20] for the next
one if the packet is invalid. If BIND receives an ICMP
error message in udp_recv, it will cancel the receiving
process and transition into one of two states: state 12⃝
(type 3 and code 0/2) or state 13⃝ (type 3 and code 3).

• Unbound employs iter_operate [115] to handle ev-
ery incoming response that is considered as an event.
The callback function for a response receiving event
is outnet_udp_cb [116]. If the packet is malformed,
Unbound will call comm_point_udp_callback [114]
at most 100 times to continue reading the next packet.
For a DNSKEY query, if the RCODE is 1 (FormErr),
Unbound will send new queries immediately.

• Knot Resolver regards each resolution process as a
worker and initiates a queue to store packets [64]. In
worker_submit [65], differently, Knot first examines
the TXID and discards those with an unmatched TXID
before checking the format. However, Knot will re-
send queries for the malformed TCP packets, or UDP
packets with correct TXIDs but QR=0 (in the forwarding
mode). Malformed packets received via TLS or HTTPS
connections (DoT/DoH) cause the same issue as TCP.

• PowerDNS Recursor also utilizes the event mecha-
nism to receive packets [93]. Responses are received
in recvfrom [94]. PowerDNS will return an error code
directly to cease resolving [95] for an ICMP error
message or DNS payload less than 12 bytes.

• Microsoft DNS accepts the query packet (QR=0) on its
outbound request socket when receiving answers, and
issues resolver-queries for resolving new queries.

• Simple DNS Plus would stop the resolution process
upon receiving a packet with an invalid QD section.

• Technitium DNS receives and processes responses in
PostProcessQueryAsync [110]. However, it just ac-
cepts the first-arriving packet before closing the receiv-
ing socket [111]. Therefore, if the packet is malformed,
Technitium just enters state 13⃝.

• MaraDNS takes a bigloop function [76] to process
responses with the select mechanisms until obtaining a
valid answer with get_remote_udp_packet [77].

… 2

IP
Packet

ICMP Message
Type 3 Code 0, 2

12

ICMP Message
Type 3 Code 3

13

(a) BIND.

… 5

DNS
Header

RCODE=1
DNSKEY Query

12

(b) Unbound.

… 3

UDP/TCP
Packet

…

Null TCP
Payload

12

8

Matching TXID
QR=0

Parsed
Data

(c) Knot Resolver.

… 2

IP
Packet

ICMP
Message

3

UDP/TCP
Packet

4

DNS
Payload

Null UDP/TCP
Payload

UDP/TCP
Payload < 12B

13

(d) PowerDNS Recursor.

… 5

DNS
Header

QR=0
Query

12

(e) Microsoft DNS.

… 6

QD
Section

QD Section
Format Error

13

(f) Simple DNS Plus.

7… 3

UDP/TCP
Packet

13

4

DNS
Payload

5

DNS
Header

Null UDP/TCP
Payload

UDP/TCP
Payload < 12B

QR=0 or
Header Error

6

QD
Section

QD
Error

AN/NS/AR
Section

AN/NS/AR
Error

8

Parsed
Data

Unmatched
TXID

(g) Technitium DNS, Acrylic DNS, AdGuard, NxFilter, YogaDNS, and Python DNS library.

7… 2

IP
Packet

13

4

DNS
Payload

ICMP
Message

UDP/TCP
Payload < 12B

6

QD
Section

QD
Error

AN/NS/AR
Section

AN/NS/AR
Error

3

UDP/TCP
Packet

Null UDP/TCP
Payload

…

DNS
Header

(h) CoreDNS, DNS Safety, and Golang DNS library.

… 2

IP
Packet

ICMP
Message

13

(i) pdnsd and Linux stub
DNS.

… 3

13

UDP/TCP
Packet

Null UDP/TCP
Payload

(j) Windows stub DNS.

…

10

8

Unmatched
TXID

Parsed
Data

11 …

(k) MacOS and IOS stub DNS.

… 2

IP
Packet

13

4

DNS
Payload

ICMP
Message

UDP/TCP
Payload < 12B

5

DNS
Header

QR=0
Query

3

UDP/TCP
Packet

Null UDP/TCP
Payload

(l) ChromeOS stub DNS.

… 2

IP
Packet

ICMP
Message

3

UDP/TCP
Packet

Null UDP/TCP
Payload

13

(m) JavaScript DNS library.

7… 2

IP
Packet

13

4

DNS
Payload

ICMP
Message

UDP/TCP
Payload < 12B

6

QD
Section

QD
Error

AN/NS/AR
Section

AN/NS/AR
Error

3

UDP/TCP
Packet

Null UDP/TCP
Payload

5

DNS
Header

QR=0
Query

8

Parsed
Data

Unmatched
TXID

10 Receiving
Closed

Checking
Query Limit11

Terminating
Resolution1312

Sending
Queries

(n) Java DNS library.

Figure 7. Specific state transitions of DNS response pre-processing implementations for different software (Red lines represent vulnerable state transitions).

DNS forwarders. Dnsmasq and Pi-hole function identically
to the general logic, whereas other software show a variety
of distinct actions.

• Dnsmasq employs the polling mechanism in a running
loop [42] to receive the response until a legal response
is returned (reply_query [41]) and works as Figure 6.

• CoreDNS implements the resolver server portion [34]
but uses the Golang DNS library for outgoing queries.

• Pi-hole is built on Dnsmasq and behaves similarly.
• pdnsd will terminate resolution on ICMP messages.
• Acrylic DNS, AdGuard, NxFilter, and YogaDNS are

forwarders that provide traffic filtering and work simi-
larly to Technitium accepting malformed DNS packets.

• DNS Safety accepts ICMP messages but ignores re-
sponses with wrong TXIDs, similar to CoreDNS.

• Dual DHCP DNS will discard all malformed packets.

Stub resolvers, except for Android, implement at least one

state transition path distinct from the general workflow.

• Linux stub DNS (systemd-resolved) also leverages
the event technique (sd_event_add_io [107]) to re-
ceive packets with on_dns_packet [106]. If the packet
contains an ICMP error message, the resolution will be
terminated and other servers will be attempted.

• Windows stub DNS will terminate its resolution op-
eration if the response has a null UDP/TCP payload.

• MacOS and IOS stub DNS will initiate new TCP
queries no more than 2 times (after checking the query
limit) [13] if the UDP response’s TXID is not correct.

• Android stub DNS has the exactly same processing
workflow in Figure 6, and the source document is [11].

• ChromeOS stub DNS will close the receiving connec-
tion in DoReadResponseComplete [30] if it encounters
an ICMP error message, DNS payload smaller than 12
bytes, or DNS header with QR=0.

TABLE 1. THE DNS RESOLUTION MECHANISM AND RESPONSE PRE-PROCESSING IMPLEMENTATIONS OF 28 DNS SOFTWARE (24 VULNERABLE).

Resolver Resolution Vulnerable state transition Vulnerability

Query Negative 8⃝ 2⃝ 3⃝ 5⃝ 8⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝ 8⃝
Role Software Version ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ VCP VDS VRC

count caching 10⃝ 12⃝ 12⃝ 12⃝ 12⃝ 13⃝ 13⃝ 13⃝ 13⃝ 13⃝ 13⃝ 13⃝

BIND 9.18.14 13 ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
Unbound 1.17.1 9 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Knot 5.5.3 3 ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Recur- PowerDNS 4.8.3 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

sive Microsoft 2022 2 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Simple DNS+ 9.1.111 3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Technitium 11.0.2 6 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
MaraDNS 3.5.0036 6 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Dnsmasq 2.89 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CoreDNS 1.10.1 3 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Pi-hole 5.17.1 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Forw- pdnsd 1.2.9 1 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
arder Acrylic DNS 2.1.1 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

AdGuard 7.14 2 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
DNS Safety 1.0 1 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Dual DHCP DNS 8.00RC 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
NxFilter 4.6.7.6 3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

YogaDNS 1.37 1 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Stub

Linux 253 6 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Windows 2023 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
MacOS 13.2.1 6 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

IOS 16.3.1 6 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Android 13 4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ChromeOS 111.x 5 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

Python 2.3.0 1 - ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗
Lib- Golang 2023 1 - ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗
rary JavaScript 19.8.1 1 - ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Java 3.5.2 1 - ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

‘-’: Not applicable due to no caching. ✓: Yes. ✗: No. ✓: Vulnerable. ✗: Not vulnerable.

DNS libraries operate most differently from Figure 6.
• Python DNS library performs the same operations

using receive_udp [43] with Technitium DNS.
• Golang DNS library runs a loop [45] to receive pack-

ets with a matching TXID. If the packet is malformed,
the loop will return and the resolution will stop.

• JavaScript DNS library accepts an ICMP error mes-
sage and a null UDP/TCP payload as a resolution end
signal and transitions to state 13⃝ (see documents [85]).

• Java DNS library will take any ICMP error message or
UDP/TCP response as a valid DNS answer and end the
resolution process without retransmission in send [40].

4.3. Novel Logic Vulnerabilities in DNS Response
Pre-processing

By conducting a comprehensive analysis of DNS re-
sponse pre-processing for 28 DNS software, we explore their
implementation variations and discover multiple new logic
vulnerabilities in 24 of the analyzed software (as listed in
the “Vulnerability” column of Table 1). We categorize these
vulnerabilities into three groups based on their effects: cache
poisoning (VCP in 9 software), DoS (VDS in 20 software), and
resource consuming (VRC in 3 software). Notably, VCP and

VDS could be exploited for cache poisoning and DoS attacks
in less than one second. In this section, we provide a high-
level explanation of the root cause of the vulnerabilities and
how they can be exploited, while leaving the details of the
attack steps to Section 5.

VCP: cache poisoning vulnerability. Different from
other DNS software, Microsoft DNS allows a DNS query
packet (QR=0) to be received on the socket designated for
responses, as long as the packet’s four-tuple matches (as
shown in Figure 7(e)). In particular, this new DNS query
packet can contain any query domain name. Upon receiving
this query, Microsoft will initiate another recursive resolu-
tion procedure to resolve it. However, this operation creates
an effective side channel that attackers can use to locate
the source port utilized by Microsoft DNS. This is because
only the query with a matching four-tuple can be accepted,
while packets received on other ports will be ignored. In
Section 5.1, we will demonstrate how attackers could exploit
this vulnerability to identify the source port in less than one
second (without the need to guess it) and poison arbitrary
domain names, resulting in a cache poisoning attack that
is significantly faster than all prior ones. Apart from this
vulnerability, we find AdGuard does not verify the TXIDs of
DNS responses in state 8⃝, which satisfies the cache attack
condition. In addition, we uncover other cache poisoning

TABLE 2. EXPERIMENT RESULTS OF THREE TYPE OF TUDOOR
ATTACKS ON EXEMPLAR SOFTWARE.

TUDOOR Selected Average Average Success
attack software time cost traffic rate rate

DNSPOISONING
Microsoft DNS 425ms 103Mbps 19/20

Technitium 349ms 84Mbps 16/20

DNSDOS BIND 241ms 35Mbps 18/20
PowerDNS 185ms 29Mbps 20/20

TUDOOR Selected Query # Actual Success
attack software limit query rate

BIND 13 100 -
DNSCONSUMING Unbound 9 60+ -

Knot 3 100 -

‘-’: Not applicable.

vulnerabilities that are unrelated to malformed packet injec-
tion and describe them in Section 5.1. We demonstrate that
attackers could exploit these vulnerabilities to poison DNS
software in a brief period of time.

VDS: denial-of-service vulnerability. In the generic
workflow of DNS response pre-processing shown in Sec-
tion 4.1, any malformed packet or DNS response with an
unmatched TXID will be discarded, and resolvers should
await a time frame for any future valid response. However,
we find that 20 software fail to enter state 0⃝ when receiving
some malformed packets but immediately close the receiv-
ing socket and stop the resolution instead. Afterward, they
return a ServFail reply to clients. Due to the fact that they
accept the malformed packet before verifying TXIDs and
never attempt to receive the next legal response, an attacker
could manufacture a small number of malformed responses
to DoS the resolver by simply enumerating source ports.
Every outbound query from a source port that is hit would
fail. The effect is mitigated for software that falls back to
TCP, such as MacOS and IOS (state 8⃝→ 10⃝); however, if
the remote server does not support TCP, they will also not
obtain valid responses. In addition, we will demonstrate that
negative caching contributes to our attack in Section 5.2.

VRC: resource consuming vulnerability. As described
in Section 4.2, upon receiving certain malformed packets,
BIND (Figure 7(a)), Unbound (Figure 7(b)), and Knot
Resolver (Figure 7(c)) would directly transition into state
12⃝ and send new queries without checking the retry limit.
After reviewing source code, we find query limit-checking is
located after the retry section. Therefore, attackers can com-
promise this vulnerability by repeatedly returning malformed
packets via a malicious nameserver, which would trigger
more queries and exhaust the resolver’s CPU resources.

5. Three TUDOOR Attacks

In this section, we provide detailed exploitation steps
for three proposed TUDOOR attacks, including DNSPOI-
SONING, DNSDOS, and DNSCONSUMING, and the end-
to-end experiments with controlled network settings. We
then compare TUDOOR with previous attacks in detail. In
addition, we identify another two types of cache poisoning

Guessing TXID
(𝑻𝑿𝑰𝑫𝑹𝑺 - 𝑻𝑿𝑰𝑫𝑹𝑬)

Probing source port
(𝑷𝒐𝒓𝒕𝑹𝑺 -𝑷𝒐𝒓𝒕𝑹𝑬)

(𝑰𝑷𝑪)

𝑸𝑪: vitm.com A 𝑇𝑋𝐼𝐷"?
<𝐼𝑃" , 𝑃𝑜𝑟𝑡"> à <𝐼𝑃#, 53>

Target
Recursive Resolver (𝑰𝑷𝑹)

1

(𝑰𝑷𝑨)

𝑸𝑹𝑯 : vitm.com A 𝑻𝑿𝑰𝑫𝑹𝑯 ?
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑯> à <𝐼𝑃', 53> 2

NS of vitm.com/atkr.com
is cached

𝑹𝑽𝑯: vitm.com A 𝑻𝑿𝑰𝑫𝑹𝑯
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑯> ß <𝐼𝑃), 53> 7

<𝐼𝑃', 53> à <𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑺>

vitm.
com

Authoritative
Nameserver (𝑰𝑷𝑽)

<𝐼𝑃', 53> à <𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑬>

…

𝑸𝑹𝑶: 𝑷𝒐𝒓𝒕𝑹𝑯.atkr.com A 𝑇𝑋𝐼𝐷#-?
<𝐼𝑃#, 𝑃𝑜𝑟𝑡#-> à <𝐼𝑃), 53> 4

𝑷𝒐𝒓𝒕𝑹𝑯
Sending source port 𝑷𝒐𝒓𝒕𝑹𝑯 5

<𝐼𝑃', 53> à <𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑯>

<𝐼𝑃', 53> à <𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑯>

…

𝑻𝑿𝑰𝑫𝑹𝑯

𝑹𝑹: vitm.com A 𝑇𝑋𝐼𝐷"
<𝐼𝑃" , 𝑃𝑜𝑟𝑡"> ß <𝐼𝑃#, 53> 8

𝑷𝒐𝒓𝒕𝑹𝑯

Attack
started

Figure 8. Attack steps of DNSPOISONING.

vulnerabilities: VCPR and VCPA that could be used to poison
DNS software. Here, we describe the experiment setup.
Experiment setup. Since almost all software is vulnerable
to TUDOOR (shown in Table 1), we select a subset of these
software (listed in Table 2) to conduct attack experiments
based on the popularity [72] and our identified distribution
share in Section 6.3. We install BIND, Unbound, Knot, and
PowerDNS on a server running Ubuntu 20.04 respectively,
while Microsoft DNS and Technitium are installed on a
Windows Server 2022. The victim’s and the attacker’s DNS
nameservers1, and the attack program (based on Golang)
are hosted on separate Ubuntu Server 20.04 machines. All
machines are linked to a local network (1000Mbps band-
width) and assigned with public IPs. Moreover, we use IPC
(attacker), IPR (target), IPA (attacker’s nameserver), and IPV
(victim’s nameserver) to denote the IPs of different roles.

5.1. DNSPOISONING Attack (Cache Poisoning)

DNS cache poisoning is one of the most potent attacks
because it can affect all clients if an attacker successfully
inject forged DNS responses. However, even the state-of-
the-art attack method like [74], [75] will take an average of
80s to 504s, which is also ineffective to Microsoft DNS2.
Using the vulnerability VCP (a new side channel), we prove
that an DNSPOISONING attacker could inject arbitrary fake
responses into vulnerable resolvers (e.g., Microsoft DNS) in
less than one second. In addition, we identify another two
types of vulnerabilities: (i) VCPR of source port or TXID
randomization that could be employed to poison Technitium
(Acrylic DNS, AdGuard, DNS Safety, Dual DHCP DNS,
NxFilter, and YogaDNS) within just one second; (ii) VCPA
of query aggregation used for poisoning CoreDNS.
VCPR: source port or TXID randomization vulnerabil-
ity. Technitium DNS implements a sequentially increasing

1. We registered two own domains for testing. For anonymity, we use
vitm.com (for the victim) and atkr.com (for the attacker) in the following.

2. Microsoft DNS opens and listens on all 2,500 source ports simulta-
neously for resolution, which cannot be inferred through side channels.

source port generation algorithm while operating on Win-
dows. After examining the source code, we identify the
underlying culprit as the C Sharp socket library used by
Technitium [112]. Acrylic DNS and AdGuard also generate
the source port sequentially, while YogaDNS sequentially
selects both the source port and TXID. Dual DHCP DNS
uses a fixed source port after starting. Besides, DNS Safety,
Dual DHCP DNS, and NxFilter utilize the same TXID
value extracted from the client’s DNS query. Using VCPR,
an adversary could pinpoint the source port or TXID within
a second and poison these software.
VCPA: query aggregation vulnerability. To defend against
the “birthday paradox” [103], query aggregation is proposed
to ensure that only one outgoing query is issued to resolve
the same query domain name. However, CoreDNS permits
multiple simultaneous queries for a given query name, ren-
dering it vulnerable to the “birthday paradox”-based cache
poisoning attacks. We save this for future work.
Attack design. We show the DNSPOISONING attack steps
in Figure 8. To begin with, an attacker initiates a DNS
query to the target recursive resolver for the victim domain
vitm.com (step ➀). After receiving the query, the target
resolver starts the resolution process by sending a query to
vitm.com’s nameserver. The query four-tuple and TXID are
(IPR, PortRH → IPV , 53) and T XIDRH (step ➁).

The initial phase of cache injection for the attacker is
to determine the source port PortRH through the following
two operations. First, by spoofing the source IP address
IPV , the attacker sends a number of DNS queries for his or
her controlled domain atkr.com towards all possible source
port numbers PortRX (from PortRS to PortRE) of the target
resolver, using the four-tuple (IPV , 53 → IPR, PortRX) in step
➂. Second, the query domain name is encoded with each
probed source port number for observing and differentiating
the source ports. For example, if the probing query is sent to
PortRX , its domain name is set as PortRX.atkr.com. As soon
as the probing query hits the correct source port PortRH , the
target resolver will accept it and deliver another query for
resolution (step ➃). The attacker could then observe this new
query on the controlled nameserver and “steal” the correct
source port number (step ➄).

The next phase involves guessing TXIDs. The attacker
can brute-force 65,536 TXID values by injecting fake re-
sponses (step ➅) with the correct four-tuple (IPV , 53 →
IPR, PortRH) before the target resolver receives a legitimate
response (step ➆). The target resolver will then accept the
forged response with a correct T XIDRH and cache it, which
signals the success of the attack (step ➇).

For attacking a resolver running Technitium DNS, unlike
the above procedures, the attacker should initiate the process
by sending a query for atkr.com to obtain the source port
PortP on the nameserver, and then query vitm.com. The
target resolver will use PortP + 1 as the source port for
resolution. The attacker can simply brute-force all 65,536
possible TXID values to inject forged responses with the
four-tuple (IPV , 53 → IPR, PortP +1).
End-to-end attack. We ran the DNSPOISONING attack 20
times against Microsoft DNS and Technitium DNS using

two different attack programs implementing the aforemen-
tioned techniques. To increase query latency, we delayed
one second before returning the legal response of vitm.com.
Besides, we find that Microsoft DNS only utilizes 2,500
source ports for resolution, further reducing the probing
space. Specifically, all these 2,500 source ports are in the
open state, making port inference methods in [74], [75]
inoperable. The experiment results are shown in Table 2.
The respective attack success rate of Microsoft DNS and
Technitium DNS are 19/20 and 16/20. On average, it takes
only 425ms (103Mbps) and 349ms (84Mbps) to attack Mi-
crosoft DNS and Technitium DNS, respectively. Compared
to prior attacks that took 80 to 504 seconds [74], [75],
DNSPOISONING is approximately 200 to 1,000 times faster.
Discussion. First, to poison an entire SLD or TLD, we could
conduct DNSPOISONING for NS queries issued by recursive
resolvers. Since DNSPOISONING can inject arbitrary re-
sponses within one second, we can seize the entire zone and
all of its domains by forging NS records. Second, to ensure
the fake responses are received before the legitimate ones,
one option is to send the packets from a nearby machine
or launch the denial-of-service attack on the nameserver,
preventing the nameserver from returning a response by
triggering the rate-limiting mechanism [74]. Third, we need
to consider the architecture of resolvers and nameservers:

Multiple nameservers. Many domains are configured
with multiple authoritative nameserver IP addresses. We
analyzed the latest zone files of .com and .net downloaded
from ICANN’s CZDS service [53] and found domains under
them have a median of 4 nameserver IPs. Since our attack
only requires a maximum of 65,536 packets (or even 2,500)
to identify the source port, attackers could simultaneously
spoof these IPs by sending 65,536×4 packets.

Multiple backend IPs. Public DNS services usually have
multiple backend IPs, extending the injection space. How-
ever, the selection of backend IPs is typically based on
factors such as geolocation and network performance. For
example, via experiments from a specific geolocation, we
found 17 out of 18 affected public DNS services (tested in
Section 6.2) have only 1-2 backend IPs. Thus, attackers only
need to focus on spoofing a few IPs at once.

5.2. DNSDOS Attack (Denial-of-Service)

In the DNSDoS attack, an attacker could DoS all DNS
resolver roles, including the stub resolvers, DNS forwarders,
and recursive resolvers, within just a single second. As an
example, we present the attack procedure for the recursive
resolver, which suffers from significant DoS effects on all its
clients. The fundamental idea is that an attacker can brute-
force the source port of DNS queries and inject malformed
packets. By utilizing the vulnerability VDS, the attacker can
deceive the target resolver into terminating the resolution
process and returning invalid answers (ServFail) to clients.
Attack design. We depict the attack steps of DNSDOS
in Figure 9. An attacker starts by sending a query for the
victim domain vitm.com to the target resolver (IPR, step
➀). The target resolver then requests the upstream server

Guessing
source port

(𝑷𝒐𝒓𝒕𝑹𝑺 -𝑷𝒐𝒓𝒕𝑹𝑬)

(𝑰𝑷𝑪)

𝑸𝑪: vitm.com A 𝑇𝑋𝐼𝐷"?
<𝐼𝑃" , 𝑃𝑜𝑟𝑡"> à <𝐼𝑃#, 53>

vitm.
com

Target
Recursive Resolver (𝑰𝑷𝑹)

1

Authoritative
Nameserver (𝑰𝑷%)

𝑸𝑹𝑯: vitm.com A 𝑇𝑋𝐼𝐷#'?
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑯> à <𝐼𝑃(, 53> 2

NS of vitm.com/atkr.com
is cached

𝑹𝑽𝑯: vitm.com A 𝑻𝑿𝑰𝑫𝑹𝑯
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑯> ß <𝐼𝑃*, 53> 4

<𝐼𝑃(, 53> à <𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑺>

<𝐼𝑃(, 53> à <𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑬>

…

𝑹𝑹: DNS server fail 𝑇𝑋𝐼𝐷"
<𝐼𝑃" , 𝑃𝑜𝑟𝑡"> ß <𝐼𝑃#, 53> 5

𝑷𝒐𝒓𝒕𝑹𝑯

Attack started

Figure 9. Attack steps of DNSDOS.

(e.g., vitm.com’s nameserver) for responses with the four-
tuple (IPR, PortRH → IPV , 53). Before a legal response
is returned, the attacker must determine the source port
and inject malformed packets. To achieve this purpose, the
attacker can spoof the IP address IPV and brute-force all
65,536 port numbers (step ➂). Once PortRH is hit, the
target resolver will accept the malformed response without
verifying the TXID and terminate the resolution. Then, all
further replies will be disregarded (step ➃). All clients who
query vitm.com will receive invalid ServFail responses,
causing the follow-up connection to fail (step ➄).
End-to-end attack. In the experiment, we select BIND
and PowerDNS as the target resolvers and attack them
individually using ICMP error messages (type 3 and code
3) and null UDP payload packets. Particularly, the attacker
does not need to forge the source IPs for ICMP messages
since the OS kernel merely checks the four-tuple embedded
in ICMP payloads. Similar to the DNSPOISONING attack,
our nameserver will temporarily hold the response for one
second before sending it to the resolver. As listed in Table 2,
we execute DNSDOS 20 times with a success rate of 18/20
for BIND and 20/20 PowerDNS. The average attack time
taken (traffic rate) for BIND and PowerDNS is just 241ms
(35Mbps) and 185ms (29Mbps), respectively. In contrast,
traditional DDoS attacks (e.g., [15], [31], [113]) against
resolvers require at least 1Gbps of network bandwidth.
Discussion. There are some practical attack considerations.

Attacking NS queries. To DoS the target resolver, an at-
tacker could inject malformed packets for either NS queries
or other queries to fetch the final answer. After receiving
malformed packets, the target resolver will determine the
remote server is inaccessible. Consequently, if the NS query
targeting the root or TLD nameserver fails, all subsequent
queries under these zones like .com and .net fail as well.

Retransmission and negative caching. Even though the
majority of evaluated software provides a retransmission
mechanism, none of them resend queries after receiving our
malformed packet; instead, they close the receiving socket
and return a ServFail response to clients. Besides, 6 of
them employ the negative caching method (the “Negative
caching” column in Table 1), in which resolvers store the
ServFail response for a period of time and do not transmit
further requests for the same remote server. For instance,

(𝑰𝑷𝑪)

𝑸𝑪: atkr.com A 𝑇𝑋𝐼𝐷"?
<𝐼𝑃" , 𝑃𝑜𝑟𝑡"> à <𝐼𝑃#, 53>

Target
Recursive Resolver (𝑰𝑷𝑹)

1

(𝑰𝑷𝑨)

𝑸𝑹𝟏: atkr.com A/DNSKEY 𝑻𝑿𝑰𝑫𝑹𝟏?
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝟏> à <𝐼𝑃', 53> 2

NS of atkr.com
is cached

<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝟏> ß <𝐼𝑃', 53>

𝑸𝑹𝟐: atkr.com A/DNSKEY 𝑻𝑿𝑰𝑫𝑹𝟐?
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝟐> à <𝐼𝑃', 53> 4

<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝟐> ß <𝐼𝑃', 53>

…

𝑸𝑹𝟑: atkr.com A/DNSKEY 𝑻𝑿𝑰𝑫𝑹𝟑?
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝟑> à <𝐼𝑃', 53> 6

𝑸𝑹𝑵: atkr.com A/DNSKEY 𝑻𝑿𝑰𝑫𝑹𝑵?
<𝐼𝑃#, 𝑷𝒐𝒓𝒕𝑹𝑵> à <𝐼𝑃', 53> N

Attack
started

Figure 10. Attack steps of DNSCONSUMING.

the default negative cache TTL of Technitium is 300s [109].
PowerDNS will mark the resolver as unavailable for a nega-
tive cache TTL time, including the TLD nameservers. These
behaviors make it easier for an attacker to send malformed
packets between the negative cache TTL interval, during
which the attacker does not need to send packets.

Multiple nameservers and backend IPs. To handle multi-
ple nameserver IPs and resolver backend IPs, we essentially
use the same techniques as shown in Section 5.1. Besides,
because DNSDOS only needs to brute-force 65,536 source
port numbers, it is possible for attackers to spoof all the IPs.

5.3. DNSCONSUMING Attack (Resource Consum-
ing)

The DNSCONSUMING attack aims to deplete the target
resolver’s resolution resources by manipulating it to issue
more queries. Leveraging the vulnerability VRC, an attacker
could bypasses the query retransmission limit.
Attack design. Figure 10 shows the detailed DNSCON-
SUMING exploitation steps. To launch DNSCONSUMING,
the attacker should be on-path and operate a domain name-
server (e.g., atkr.com) that produces malformed packets.
First, the attacker sends a query towards the target recursive
resolver for atkr.com (step ➀). Second, the target resolver
performs recursive resolution from the root to .com in order
to obtain atkr.com’s nameserver (same as below), then
queries the nameserver for answers (step ➁). Third, the
attacker continues to return carefully crafted packets (step
➂) to the correct source port, whereas the target resolver
keeps sending new queries to the malicious nameserver (step
➃) until it reaches a total resolution limit.
End-to-end attack. We conduct DNSCONSUMING against
BIND, Unbound (with the DNSSEC option enabled), and
Knot Resolver with the following different queries (re-
sponses): A query (ICMP type 3 and code 0), A query
(null TCP payload), and DNSKEY query (RCODE FormErr).
As shown in Table 2, DNSCONSUMING can cause BIND,
Unbound, and Knot Resolver to query 100, 60+, and 100
times larger than the retransmission limit of 13, 9, and 3,

respectively, which is employed to mitigate the previous
attacks [3], [83]. With Valgrind [117], we show DNSCON-
SUMING makes BIND and Knot cost 35× and 30× more
CPU instructions, respectively. Since the outcome is deter-
ministic, we just test DNSCONSUMING once for them.
Discussion. An attacker might boost resource consumption
in two ways. The first method is to immediately return the
malformed packet to overwhelm the CPU. The alternative
would be to increase the response packet size. We observe
that BIND, Unbound, and Knot Resolver accept packets
larger than 4,096 bytes (with a maximum limit of 65,535
bytes) through fragmentation. This increases the potential
resource consumption through packet fragmentation [51].

5.4. Comparison with Prior Attacks

The TUDOOR attack is novel because it exploits three
new logic vulnerabilities (and three new corresponding tech-
niques) found by systematic analysis of DNS response pre-
processing. Several previous studies have examined specific
aspects of DNS response processing, such as the analysis of
cache poisoning [35], amplification DDoS [66], bailiwick
checking [71], [103], and cache injection [62]. However,
none of them provide a thorough investigation of the entire
DNS response pre-processing procedure, as we present in
this paper. Although the attack vectors are known, TuDoor
differs significantly from existing works in both vulnerabil-
ity discovery and attack techniques (impacts).

For vulnerability discovery, we use state machines to
analyze DNS response pre-processing that has not been thor-
oughly studied and identify new vulnerabilities, particularly
malformed responses. Prior work only studied the process-
ing of legal format [3], [4], [74], [75] or legal with escaped
characters encoding (not malformed) [55], [56] responses.

With regard to detailed attack techniques (impacts), three
attacks work separately compared with prior attacks:

• DNSPOISONING uses malformed responses (QR=0) to
pinpoint source-port directly by forcing resolvers to
send queries for the attacker’s domain without requir-
ing probability-based divide-and-conquer port guessing
employed by [74], [75]. Therefore, DNSPOISONING
could poison arbitrary domains (including TLDs) in
less than 1s, which is about 200 to 1,000 times faster
than previous attacks [5], [74], [75]. DNS cache poi-
soning will benefit from a fast attack, because forged
responses must be returned before the legitimate ones.
Otherwise, attackers have to delay legal responses like
muting nameservers [74], [75], which affects normal
resolution and makes it difficult to poison TLDs (too
many nameserver IPs and good performance). Besides,
our experiments revealed [74], [75] cannot function
on Microsoft DNS (see Section 5.1). Moreover, when
injecting forged responses, previous Kaminsky-style
attacks [58], [74], [75] all send A queries and include
fake NS records in the authoritative section because
they must try many times with different random subdo-
mains of an SLD in each round based on the guessing
probability. Once the attack succeeds, the phony NS

records will be cached, and all subsequent queries
under that SLD can be hijacked. This type of response
can also enhance the effectiveness of DNSPOISONING
for poisoning NS records of SLDs. Furthermore, by
just sending an A or NS query, DNSPOISONING can
directly inject forged A or NS records carried in the
answer section for both SLDs and TLDs. Specifically,
to inject fake records, DNSPOISONING only needs to
send a maximum of 216 malformed response (QR=0)
packets to pinpoint the source port and another 216

responses to enumerate the 16-bit TXID field. However,
in the worst-case scenario, Kaminsky-style attacks have
to send 232 responses for each attack query due to
16-bit port and 16-bit TXID space. Comparing the
total number of packets required by attackers to have
one attack instance to be successful, DNSPOISONING
requires roughly 217 packets, which is more effective
than Kaminsky-style attacks which require 232 packets
in the worst case.

• DNSDOS forces resolvers to terminate resolution via
a small number of targeted malformed packets and to
cache negative responses for a period of time, affecting
future queries (see Section 5.2). Thus, DNSDoS is
less expensive and stealthier. In contrast, traditional
DoS attacks (including low-rate DoS) [31], [48], [68],
[113] must continuously send large volumes of traffic
to occupy network bandwidth and cause packet loss.
Although one type of our malformed packets ICMP,
has been exploited to DoS TCP connections [46], there
is little discussion about UDP and DNS in this regard.

• DNSCONSUMING circumvents query-limits and ren-
ders resolvers to consume more CPU resources like [4],
since one attack query could trigger such as 100 re-
solver queries (see Section 5.3). Although DNSCON-
SUMING requires on-path attackers, these attackers
have limited packet operating capabilities and can only
control their own domains to send responses and trigger
vulnerabilities, in contrast to traditional on-path packet
interception that can observe and modify all packets
except those sent to their own nameservers [73].

6. Vulnerable Resolvers in the Wild

In this section, we provide a comprehensive TUDOOR
exploiting picture in the wild by evaluating 16 Wi-Fi routers,
6 router OSes, 42 public DNS services, and 1.8M open
DNS resolvers. We demonstrate via testing that a substantial
portion of the resolver population is vulnerable to TUDOOR.

6.1. Wi-Fi Routers and Router-OSes

Router and OS list. Through investigation [100], [120], we
purchased 16 popular Wi-Fi routers and installed 6 router
OSes on our machines, as shown in Table 3.
Testing. We connected our client machine to these routers
(OSes) and configured their upstream DNS servers to point
straight to our authoritative nameserver. Then, we verified
their state transitions from on-path according to Section 4.

TABLE 3. 16 WI-FI ROUTERS AND 6 ROUTER OSES TESTING RESULTS.

Type Vendor Version Cache
poisoning

ASUS RT-AC66U 9.0.0.4.x ✗
D-Link DIR-816 17.01.11 ✗
FAST FAC1200R 3.0.x ✗

FiberHome R1 AX1800 RP0102 ✗
H3C Magic NX15 100R008 ✗
HUAWEI AX3 Pro 3.0.3.213 ✗
LINKSYS EA8100 2.0.4.x ✗

Wi-Fi MERCURY D191G 2.0.2.x ✓
router Netcore N30 1.0.5.14 ✗

Nighthawk RAX70 1.0.14.134 ✓
Skyworth WR9651X 1.0.0 ✓

Tenda AX2 Pro 16.03.29.36 ✓
TOTOLINK X5000R 1.0.0.x ✓

TP-LINK TL-XDR3230 1.0.22 ✗
Redmi AX3000 1.0.46 ✓

ZTE ZXHN E2631 1.0.0.x ✗

DD-WRT r52189 ✗
Gargoyle 1.13.0 ✗

Router iKuai OS 3.7.0 ✓
OS libreCMC 1.5.12 ✗

OpenWrt 22.03.3 ✗
RouterOS 7.8 ✗

Ordered according to the alphabet. ✓: Vulnerable. ✗: Not vulnerable.

Results. After testing, we found all 16 routers and 6 OSes
function identically as described in Figure 6, because they
are built on OpenWrt (Dnsmasq) [87] which is immune
to TUDOOR. However, we identified other vulnerabilities
related to the source port randomization and query aggrega-
tion in 7 routers (OSes) (the “Cache poisoning” column in
Table 3). An attacker might poison these 7 routers (OSes)
by brute-forcing the source port or exploiting the “birthday
paradox” [103]. This attack will be left for future work.

6.2. Public DNS Services

Public DNS service list. According to the statistics from
APNIC [12], we selected 42 widely-used public DNS ser-
vices and exemplar IP addresses in Table 6.
Testing. We examined the response pre-processing state
transitions of these 42 public DNS services based on Sec-
tion 4 utilizing our own domain. Multiple tests were con-
ducted on each of them to guarantee their validity. Addi-
tionally, we evaluated their negative caching behaviors.
Results. The overall testing results of 41 public DNS ser-
vices are shown in Table 6, 18 of which are vulnerable.
In detail, one public DNS service (114DNS) is vulnerable
to DNSPOISONING since it operates similarly to Microsoft
DNS, which allows DNS queries when receiving the re-
sponse (state 5⃝→ 12⃝). However, 114DNS only accepts a
query with the same query domain name as the one sent on
the receiving socket. In order to poison 114DNS, an attacker
could exploit this vulnerability to occupy as many as source
ports and brute-force remaining source ports like [5]. Other
17 public DNS services are vulnerable to DNSDOS, and
10 of them employ negative caching.

TABLE 4. STATISTICS OF VULNERABLE OPEN RESOLVERS.

Type Resolver number and percentage

Collected Alive on 03/10/2023 1,837,442 (100.0%)

Microsoft DNS 205,984 (11.2%)
BIND 54,813 (3.0%)

Software Unbound 12,765 (0.7%)
identified PowerDNS Recursor 12,750 (0.7%)

Knot Resolver 45 (0.0%)
CoreDNS 8 (0.0%)

Vulnerable

DNSPOISONING 205,984 (11.2%)
DNSDOS 216,317 (11.8%)

DNSCONSUMING 67,623 (3.7%)

TUDOOR 423,652 (23.1%)

TABLE 5. TOP 10 REGION AND ASN DISTRIBUTION OF COLLECTED
OPEN RESOLVERS.

Region # % AS # %

China 658,312 35.8% ASN 4134 247,572 13.5%
India 141,668 7.7% ASN 4837 126,485 6.9%

United States 135,201 7.4% ASN 4538 63,151 3.4%
South Korea 84,908 4.6% ASN 24560 63,062 3.4%

Russia 79,978 4.4% ASN 17488 54,148 2.9%
Indonesia 66,147 3.6% ASN 4847 47,276 2.6%

Brazil 52,609 2.9% ASN 4766 39,880 2.2%
Bangladesh 41,073 2.2% ASN 4808 30,784 1.7%

Iran 38,739 2.1% ASN 58224 27,598 1.5%
Japan 26,018 1.4% ASN 3462 22,900 1.2%

Total 227 regions Total 24,941 ASes

6.3. Open DNS Resolvers

Open DNS resolver list. Since the open DNS resolver is
volatile [101], we aim to acquire the most recent “screen-
shot” of the Internet by scanning the IPv4 network for
UDP port 53 on our controlled domain with XMap [70].
We disregard these returning wrong results. Via scanning
on March 10, 2023, we discovered over 1.8 million open
DNS resolvers containing DNS forwarders and recursive
resolvers as shown in Table 4. Specifically, 1.8M open DNS
resolvers are associated with 227 regions and 24,941 ASes
(autonomous systems). The top 10 regions and ASes of
collected resolvers are listed in Table 5, with China, India,
and the United States ranking highest. We acknowledge that
the resolver distribution may introduce a bias in which a
few regions account for the majority; however, we aim to
demonstrate the impact rather than analyze their distribution.
Testing. To analyze 1.8M resolvers’ behaviors against TU-
DOOR, we cannot return malformed packets due to ethical
reasons; instead, we take the following approaches. (i) We
identify their software version first using the version.bind
query [18] and then fpdns [39] (a common fingerprinting
tool in the DNS community). As all vulnerable software are
exploitable in the latest version, we can determine whether
a resolver is vulnerable by the software brand. (ii) We query
these resolvers by first returning ICMP error messages and
then normal responses to verify the vulnerability VDS. In the
end, all confirmed resolvers are just the lower bound.

TABLE 6. 42 PUBLIC DNS SERVICES TESTING RESULTS (18 VULNERABLE VENDORS).

Public DNS service Resolution Vulnerable state transition Vulnerability

Exemplar Query Negative 8⃝ 2⃝ 3⃝ 5⃝ 8⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝ 8⃝
Vendor ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ VCP VDS VRC

IP address count caching 10⃝ 12⃝ 12⃝ 12⃝ 12⃝ 13⃝ 13⃝ 13⃝ 13⃝ 13⃝ 13⃝ 13⃝

114DNS 114.114.114.114 5 - ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
360 Secure DNS 101.226.4.6 3 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
AdGuard DNS 94.140.14.14 10 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

AhaDNS 5.2.75.75 1 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Ali DNS 223.5.5.5 2 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Baidu DNS 180.76.76.76 2 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
CenturyLink DNS 205.171.2.26 6 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CFIEC Public DNS 240C::6644 12 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CIRA Shield DNS 149.112.121.10 2 - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Cisco OpenDNS 208.67.220.123 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

CleanBrowsing DNS 185.228.168.9 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
CloudFlare DNS 1.1.1.1 2 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

CNNIC sDNS 1.2.4.8 20 - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Comodo Secure DNS 8.26.56.10 2 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ControlD DNS 76.76.2.0 6 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
CZ.NIC ODVR DNS 185.43.135.1 1 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

DNS for Family 78.47.64.161 1 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DNS Forge 176.9.1.117 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

DNS.SB 45.11.45.11 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
DNS.WATCH 84.200.69.80 10 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DNSlify DNS 185.235.81.1 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

DNSPod Public DNS+ 119.28.28.28 34 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Dyn DNS 216.146.35.35 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
FDN DNS 80.67.169.12 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Freenom World DNS 80.80.80.80 7 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Google Public DNS 8.8.8.8 1 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Hurricane Electric DNS 74.82.42.42 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Level3 DNS 4.2.2.1 6 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
LibreDNS 88.198.92.222 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Neustar UltraDNS 156.154.70.1 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
NextDNS 45.90.28.118 10 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Norton DNS 199.85.126.10 9 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
OneDNS 117.50.10.10 20 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

OpenNIC DNS 103.1.206.179 10 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Quad101 DNS 101.101.101.101 6 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Quad9 DNS 9.9.9.9 7 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Safe Surfer DNS 104.155.237.225 1 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
SafeDNS 195.46.39.39 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SkyDNS 193.58.251.251 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Strongarm DNS 52.3.100.184 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Verisign Public DNS 64.6.64.6 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Yandex.DNS 77.88.8.1 8 - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

‘-’: Not applicable. Ordered according to the alphabet. ✓: Yes. ✗: No. ✓: Vulnerable. ✗: Not vulnerable.

Results. We list resolvers whose brands can be identified
as vulnerable software in Table 4, including Microsoft DNS
(205,984), BIND (54,813), Unbound (12,765), PowerDNS
Recursor (12,750), Knot Resolver (45), and CoreDNS (8).
Since BIND, Unbound, and Knot are vulnerable to VRC,
67,623 (3.7%) resolvers (the sum of them) can be ex-
ploited by the DNSCONSUMING attack. Via the ICMP
error messages, we determine that 216,317 (11.8%) are
vulnerable to the DNSDOS attack, of which 60% employ
the negative caching with a TTL value greater than 1 second
(identified through our measurements that evaluate the neg-
ative caching with continuous cache probing). All 205,984
(11.2%) resolvers running Microsoft DNS are impacted by
the DNSPOISONING attack. In total, 423,652 (23.1%) open
DNS resolvers are exploitable by the TUDOOR attack.

7. Discussion

Ethical considerations. Since our testing and experiments
involve serious vulnerabilities and active resolvers, we take
a number of ethical considerations in accordance with the
ethical principles of Menlo Report [59] and best practices
for network measurements [88]. First, we installed all ana-
lyzed software and routers (OSes) on our own machine to
evaluate and demonstrate discovered vulnerabilities. Second,
regarding 42 public DNS services, we only tested their IPs a
handful of times using our own domain and never exploited
their bugs. Third, while conducting large-scale experiments
against open resolvers, we strictly controlled the probing
speed and only sent well-formatted DNS queries (responses)
towards (from) our own domain (nameserver), in addition

to ICMP error messages. We configured the PTR record and
a website utilizing the probing IP to indicate our academic
research intent, and no opt-out was received. In the end, we
informed affected vendors of all vulnerabilities and received
confirmation and acknowledgment from them.
Lessons learned. DNS response pre-processing is an essen-
tial facet of the resolution process, which handles both legit-
imate and malicious packets. However, there is no rigorous
specification to guide software implementations, particularly
on the receiving side, thus enabling various attacks such
as cache poisoning and DoS. After systematic analysis and
evaluation against kinds of implementations, we identify
multiple new logic vulnerabilities, the majority of which fail
to provide a comprehensive consideration for the entire pre-
processing mechanism, such as malformed packet handling,
query limit checking, and QR validating. Consequently, based
on our analysis in Section 4, we call for standardization for
the DNS response pre-processing logic and implementation.
Besides, manual vulnerability discovery can be hit or miss.
We believe that our analysis could provide several guidelines
for automated approaches, which will be our future work.
Mitigation solutions. To eliminate the TUDOOR attack, we
recommend that DNS implementations adopt the state-of-
the-art DNS response pre-processing practices described in
Section 4.1, which stipulate that resolvers should await a
time window for promising normal responses. Specifically,
they should reject any malformed packets and continue to
receive valid responses. In fact, all software has attempted
to implement this workflow, but they fail to consider some
corner cases. In addition, to prevent cache poisoning, re-
solvers might enable 0x20 encoding [36] and DNSSEC [14]
(incorporated with domain holders signing their domains).

Detection. Network operators could identify potential at-
tack traffic by censoring DNS responses (QR=1) enumerating
the TXID or DNS queries (QR=0) sent to non-53 UDP ports.

Online tool. To assess resolvers’ resilience to TUDOOR,
we developed an online evaluation tool for customers, which
is made available at this website: https://test.tudoor.net.
Disclosure and feedback. Follow the ethical policy, we
have responsibly disclosed found vulnerabilities to affected
vendors, including 22 software vendors, 18 public DNS
providers, and other parties such as 7 router producers and
network operators. We have so far received responses from
29 vendors and discussed mitigation strategies with them, 18
of which confirmed and fixed related vulnerabilities. They
will have months to address these issues. We are awaiting
responses from others. 33 CVE numbers have been assigned
to us (https://tudoor.net), and part of vendors have patched
their latest versions. We summarize their feedback below.

• BIND confirmed DNSDOS but determined that ICMP
attacks were not particular to it; BIND acknowledged
DNSCONSUMING and fixed it [54].

• Unbound acknowledged DNSCONSUMING that they
would attempt to send more queries under DNSSEC,
although it was indeed resource-consuming.

• Knot fixed DNSCONSUMING with a CVE published.
• PowerDNS acknowledged and fixed DNSDOS in the

latest version and assigned a CVE to us [92].

• Microsoft confirmed the DNSPOISONING attack and
issued a CVE [80]. It has patched the DNS component
and is reproducing the DNSDOS vulnerability.

• Technitium has addressed the DNSDOS and cache
poisoning vulnerability [108] with two CVEs.

• CoreDNS secured the software against DNSDOS [33].
• MacOS and IOS confirmed DNSDOS and employed

TCP fallback to mitigate it (as did CZ.NIC).
• ChromeOS determined DNSDOS as an security vul-

nerability and is working on the patches [29].
• AdGuard confirmed DNSDOS, fixed it by falling back

to TCP [2], and requested us to apply for a CVE.
• Baidu and Cloudflare confirmed the DNSDOS attack

and awarded us bounties, respectively.
• CleanBrowsing, ControlD DNS, DNSlify, Hurricane

Electric, LibreDNS, Netgear, OpenDNS, ShieldDNS,
Strongarm, Systemd, and Xiaomi are now further
evaluating the vulnerability.

• DNS.SB replied it used PowerDNS that is vulnerable.
• iKuai and Mercury confirmed the query-aggregation

issue and are discussing mitigation solutions with us.
• Node.js confirmed DNSDOS and replied that it used

the c-ares library that has been fixed [25] with a CVE.
• YogaDNS patched both the cache poisoning and DoS

vulnerabilities and awarded a license key to us [123].

8. Related Work

DNS Resource consuming & DoS attacks. Over the years,
significant research efforts have been devoted to analyzing
DNS resource-consuming issues. The causes of resource-
consuming arise from multiple aspects. First, misconfigura-
tion or vulnerabilities of DNS components can be exploited
to force aggressive retries or query loops. For example, in
NXNSAttack [3] and NRDelegationAttack [4], a recursive
resolver may attempt to query each name server separately if
it loads a response with lots of malicious NS records, leading
to the victim being flooded with a large number of requests.
DNS Unchained [24] and TsuNAME [83] respectively use
NS and CNAME records to construct dependency loops and
force resolvers to repeatedly launch queries toward authori-
tative servers during resolution. TsuKing [122] coordinates
multiple resolvers to amplify DNS traffic level by level.

Second, attackers can abuse large DNS responses for
traffic amplification, resulting in DoS. Some types (e.g.,
ANY [8], [84] and TXT) of DNS queries can yield large re-
sponses, while the policy of minimal-sized responses for ANY
queries can partially mitigate such attacks [1]. Some DNS
extensions (e.g., DNSSEC [98]) can also introduce more
records and enlarge DNS responses. In addition, a recent
work proposed a systematic fuzzing approach to analyzing
UDP-based protocols and digging out query patterns that
can yield traffic amplification [66].
DNS cache poisoning attacks. Off-path attackers can ex-
ploit vulnerabilities in operating systems or DNS software
implementations to poison DNS caches. In 2008, such at-
tacks were popularized by Dan Kaminsky [58]. From then
on, several mechanisms, including source port and TXID

http://test.tudoor.net
http://tudoor.net

randomization, were proposed to prevent DNS cache poison-
ing. However, researchers have continued to challenge the
security of these mechanisms. [50] proposed a method to de-
randomize the source ports of resolvers behind NATs, and
[5] achieved a similar goal by using malware to exhaust the
local source ports on clients. Klein et al. [61] de-randomized
the Linux kernel’s PRNG to predict the local source ports for
cache poisoning. Several research delved into the available
side channels (e.g., ICMP global rate limit [74] and ICMP
fragment or redirection options [75]) for inferring source
ports. However, predicting transaction information can usu-
ally be slow and difficult, so fragmentation techniques were
developed to eliminate the requirements of guessing the
source ports or TXIDs [51], [124]. In addition, [55], [56]
found that an attacker could use misinterpretation of special
encoded characters to trick residential routers into caching
the injected DNS records. MaginotDNS [71] first exploited
new techniques for poisoning conditional DNS resolvers.

9. Conclusion

In this paper, we perform the first comprehensive re-
search on the security of DNS response pre-processing via
source code inspection, black-box testing, and state ma-
chine developing. We systematically investigate the ongoing
RFC standards and 28 DNS software implementations, iden-
tify three types of novel logic vulnerabilities, and propose
high-impact TUDOOR attack models. We demonstrate that
24/28 mainstream DNS implementations can be exploited to
launch DNSCONSUMING, DNSDOS, and DNSPOISONING
attacks. By conducting large-scale measurements, we eval-
uate the real-world impacts of these attacks. We find that
18/42 public DNS services, 7/22 router OSes, and 23.1% of
1.8M open DNS resolvers are vulnerable to TUDOOR.

Acknowledgement

We thank all the anonymous reviewers and our shep-
herd for their valuable comments and especially for our
shepherd’s thoughtful and patient guidance in helping us to
improve this paper. Authors from Tsinghua University were
supported by the National Natural Science Foundation of
China (U1836213, U19B2034, 62102218, and 62132011).
Authors from University of California, Irvine (UCI) were
supported by NSF CNS-2047476. Most of Xiang Li’s work
was done when visiting UCI as a project specialist.

References

[1] Joe Abley, Olafur Gudmundsson, Marek Majkowski, and Evan Hunt.
RFC 8482: Providing Minimal-Sized Responses to DNS Queries
That Have QTYPE=ANY. RFC Proposed Standard, 2019.

[2] AdGuard. upstreamplain.go. https://github.com/AdguardTeam/
AdGuardDNS/blob/master/internal/dnsserver/forward/
upstreamplain.go#L160, 2023.

[3] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. NXNSAttack:
Recursive DNS Inefficiencies and Vulnerabilities. In USENIX Secu-
rity ’20, 2020.

[4] Yehuda Afek, Anat Bremler-Barr, and Shani Stajnrod. NRDelega-
tionAttack: Complexity DDoS Attack on DNS Recursive Resolvers
. In USENIX Security ’23, 2023.

[5] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian,
and Nael B. Abu-Ghazaleh. Collaborative Client-Side DNS Cache
Poisoning Attack. In INFOCOM ’19, 2019.

[6] Eihal Alowaisheq, Peng Wang, Sumayah Alrwais, Xiaojing Liao,
XiaoFeng Wang, Tasneem Alowaisheq, Xianghang Mi, Siyuan Tang,
and Baojun Liu. Cracking the Wall of Confinement: Understanding
and Analyzing Malicious Domain Take-downs. In NDSS ’19, 2019.

[7] Sumayah Alrwais, Xiaojing Liao, Xianghang Mi, Peng Wang, Xi-
aoFeng Wang, Feng Qian, Raheem Beyah, and Damon McCoy.
Under the Shadow of Sunshine: Understanding and Detecting Bul-
letproof Hosting on Legitimate Service Provider Networks. In S&P
’17, 2017.

[8] Marios Anagnostopoulos, Georgios Kambourakis, Stefanos Gritza-
lis, and David K. Y. Yau. Never Say Never: Authoritative TLD
Nameserver-powered DNS Amplification. In NOMS ’18, 2018.

[9] Mark Andrews. Using IP RECVERR/IPV6 RECVERR on resolver
client sockets. https://lists.dns-oarc.net/pipermail/dns-operations/
2019-January/018347.html, 2019.

[10] Mark P. Andrews. RFC 2308: Negative Caching of DNS Queries
(DNS NCACHE). RFC Proposed Standard, 1998.

[11] Android. DNS Resolver. https://source.android.com/docs/core/ota/
modular-system/dns-resolver, 2023.

[12] APNIC. DNS Resolvers Use. https://stats.labs.apnic.net/rvrs, 2023.

[13] Apple. MacOS & IOS libresolv. https://opensource.apple.com/
source/libresolv/libresolv-68/res send.c.auto.html, 2023.

[14] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott
Rose. RFC 4033: DNS Security Introduction and Requirements.
RFC Proposed Standard, 2005.

[15] Arstechnica. Major DNS Provider Hit by Mysterious, Focused
DDoS Attack. https://arstechnica.com/information-technology/
2016/05/major-dns-provider-hit-by-mysterious-focused-ddos-
attack/, 2016.

[16] Hitesh Ballani and Paul Francis. Mitigating DNS DoS attacks. In
CCS ’08, 2008.

[17] BIND. CVE-2020-8616: BIND Does Not Sufficiently Limit... https:
//kb.isc.org/docs/cve-2020-8616, 2020.

[18] BIND. How Do I Change the Version that BIND Reports When
Queried for version.bind? https://kb.isc.org/docs/aa-00359, 2021.

[19] BIND. dns dispatch add. https://gitlab.isc.org/isc-projects/bind9/-/
blob/v9 18 13/lib/dns/resolver.c#L2263, 2023.

[20] BIND. udp dispatch getnext. https://gitlab.isc.org/isc-projects/
bind9/-/blob/v9 18 13/lib/dns/dispatch.c#L630, 2023.

[21] BIND. udp recv. https://gitlab.isc.org/isc-projects/bind9/-/blob/v9
18 13/lib/dns/dispatch.c#L501, 2023.

[22] Robert Braden. RFC 1122: Requirements for Internet Hosts –
Communication Layers. RFC Internet Standard, 1989.

[23] Robert T. Braden. RFC 1123: Requirements for Internet Hosts –
Application and Support. RFC Internet Standard, 1989.

[24] Jonas Bushart and Christian Rossow. DNS Unchained: Amplified
Application-Layer DoS Attacks against DNS Authoritatives. In
RAID ’18, 2018.

[25] c-ares. 0-byte UDP payload Denial of Service. https://github.com/
c-ares/c-ares/security/advisories/GHSA-9g78-jv2r-p7vc, 2023.

[26] CAIDA. State of IP Spoofing. https://spoofer.caida.org/
summary.php, 2023.

[27] Kenjiro Cho, Kensuke Fukuda, Vivek Pai, Neil Spring, Marc Kührer,
Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten
Holz. Going Wild: Large-Scale Classification of Open DNS Re-
solvers. In IMC ’15, 2015.

https://github.com/AdguardTeam/AdGuardDNS/blob/master/internal/dnsserver/forward/upstreamplain.go#L160
https://github.com/AdguardTeam/AdGuardDNS/blob/master/internal/dnsserver/forward/upstreamplain.go#L160
https://github.com/AdguardTeam/AdGuardDNS/blob/master/internal/dnsserver/forward/upstreamplain.go#L160
https://lists.dns-oarc.net/pipermail/dns-operations/2019-January/018347.html
https://lists.dns-oarc.net/pipermail/dns-operations/2019-January/018347.html
https://source.android.com/docs/core/ota/modular-system/dns-resolver
https://source.android.com/docs/core/ota/modular-system/dns-resolver
https://stats.labs.apnic.net/rvrs
https://opensource.apple.com/source/libresolv/libresolv-68/res_send.c.auto.html
https://opensource.apple.com/source/libresolv/libresolv-68/res_send.c.auto.html
https://arstechnica.com/information-technology/2016/05/major-dns-provider-hit-by-mysterious-focused-ddos-attack/
https://arstechnica.com/information-technology/2016/05/major-dns-provider-hit-by-mysterious-focused-ddos-attack/
https://arstechnica.com/information-technology/2016/05/major-dns-provider-hit-by-mysterious-focused-ddos-attack/
https://kb.isc.org/docs/cve-2020-8616
https://kb.isc.org/docs/cve-2020-8616
https://kb.isc.org/docs/aa-00359
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_13/lib/dns/resolver.c#L2263
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_13/lib/dns/resolver.c#L2263
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_13/lib/dns/dispatch.c#L630
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_13/lib/dns/dispatch.c#L630
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_13/lib/dns/dispatch.c#L501
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_13/lib/dns/dispatch.c#L501
https://github.com/c-ares/c-ares/security/advisories/GHSA-9g78-jv2r-p7vc
https://github.com/c-ares/c-ares/security/advisories/GHSA-9g78-jv2r-p7vc
https://spoofer.caida.org/summary.php
https://spoofer.caida.org/summary.php

[28] Chrome. Chrome Host Resolution. https://source.chromium.org/
chromium/chromium/src/+/main:net/dns/, 2023.

[29] Chrome. Chrome/ChromeOS DNS Can Be Made to Fail by
Attacker. https://bugs.chromium.org/p/chromium/issues/detail?id=
1424084, 2023.

[30] ChromeOS. DoReadResponseComplete. https:
//source.chromium.org/chromium/chromium/src/+/main:
net/dns/dns transaction.cc;l=340, 2023.

[31] Cloudflare. DDoS Reports. https://blog.cloudflare.com/tag/ddos-
reports/, 2023.

[32] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen,
Russell Housley, and William Polk. RFC 5280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC Proposed Standard, 2008.

[33] CoreDNS. Continue Waiting after Receiving Malformed Responses.
https://github.com/coredns/coredns/pull/6014, 2023.

[34] CoreDNS. Struct Server. https://github.com/coredns/coredns/blob/
master/core/dnsserver/server.go#L34, 2023.

[35] David Dagon, Manos Antonakakis, Kevin Day, Xiapu Luo, Christo-
pher P. Lee, and Wenke Lee. Recursive DNS Architectures and
Vulnerability Implications. In NDSS ’09, 2009.

[36] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and
Wenke Lee. Increased DNS Forgery Resistance through 0x20-bit
Encoding: Security via Leet Queries. In CCS ’08, 2008.

[37] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner.
From IP to Transport and Beyond: Cross-layer Attacks against
Applications. In SIGCOMM ’21, 2021.

[38] Joeri de Ruiter and Erik Poll. Protocol State Fuzzing of TLS
Implementations. In USENIX Security ’15, 2015.

[39] DNS-OARC. Fpdns. https://www.dns-oarc.net/tools/fpdns, 2021.

[40] dnsjava. send. https://github.com/dnsjava/dnsjava/blob/release/3.5.x/
src/main/java/org/xbill/DNS/Resolver.java#L150, 2023.

[41] Dnsmasq. reply query. https://thekelleys.org.uk/gitweb/?p=
dnsmasq.git;a=blob;f=src/forward.c#l1088, 2023.

[42] Dnsmasq. while. https://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=
blob;f=src/dnsmasq.c#l1060, 2023.

[43] dnspython. receive udp. https://github.com/rthalley/dnspython/blob/
2.3/dns/query.py#L511, 2023.

[44] Robert Elz and Randy Bush. RFC 2181: Clarifications to the DNS
Specification. RFC Proposed Standard, 1997.

[45] Golang DNS Library. connect. https://github.com/coredns/coredns/
blob/master/plugin/forward/connect.go#L117, 2023.

[46] Fernando Gont. ICMP Attacks against TCP. OWASP, 2006.

[47] Fernando Gont. RFC 5927: ICMP Attacks against TCP. RFC
Informational, 2010.

[48] Run Guo, Jianjun Chen, Yihang Wang, Keran Mu, Baojun Liu,
Xiang Li, Chao Zhang, Haixin Duan, and Jianping Wu. Tempo-
ral CDN-Convex Lens: A CDN-Assisted Practical Pulsing DDoS
Attack. In USENIX Security ’23, 2023.

[49] Mukesh Gupta and Alex Conta. RFC 4443: Internet Control Mes-
sage Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification. RFC Internet Standard, 2006.

[50] Amir Herzberg and Haya Shulman. Security of Patched DNS. In
ESORICS ’12, 2012.

[51] Amir Herzberg and Haya Shulman. Fragmentation Considered
Poisonous, or: One-domain-to-rule-them-all.org. In CNS ’13, 2013.

[52] Alden Hilton, Casey Deccio, and Jacob Davis. Fourteen Years in
the Life: A Root Server’s Perspective on DNS Resolver Security.
In USENIX Security ’23, 2023.

[53] ICANN. Centralized Zone Data Service. https://czds.icann.org/,
2023.

[54] idealeer. ICMP Error Messages Causing BIND9 to Send More
Queries than Intended). https://gitlab.isc.org/isc-projects/bind9/-/
issues/4005, 2023.

[55] Philipp Jeitner and Haya Shulman. Injection Attacks Reloaded:
Tunnelling Malicious Payloads over DNS. In USENIX Security ’21,
2021.

[56] Philipp Jeitner, Haya Shulman, Lucas Teichmann, and Michael
Waidner. XDRI Attacks - and - How to Enhance Resilience of
Residential Routers. In USENIX Security ’22, 2022.

[57] Jian Jiang, Jinjin Liang, Kang Li, Jun Li, Hai-Xin Duan, and
Jianping Wu. Ghost Domain Names: Revoked Yet Still Resolvable.
In NDSS ’12, 2012.

[58] Dan Kaminsky. It’s the End of the Cache as We Know
It. https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-
Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf,
2008.

[59] Erin Kenneally and David Dittrich. The Menlo Report: Ethical
Principles Guiding Information and Communication Technology
Research. SSRN Electronic Journal, 2012.

[60] Amit Klein. DNS Record Injection Vulnerabilities in Home
Routers. http://www.icir.org/mallman/talks/schomp-dns-security-
nanog61.pdf, 2014.

[61] Amit Klein. Cross Layer Attacks and How to Use Them (for DNS
Cache Poisoning, Device Tracking and More). In S&P ’21, 2021.

[62] Amit Klein, Haya Shulman, and Michael Waidner. Internet-Wide
Study of DNS Cache Injections. In INFOCOM ’17, 2017.

[63] Knot Resolver. Max. # of Retries after Timeout. https://gitlab.nic.cz/
knot/knot-resolver/-/blob/v5.6.0/lib/defines.h#L55, 2023.

[64] Knot Resolver. udp queue init global. https://gitlab.nic.cz/knot/
knot-resolver/-/blob/v5.6.0/daemon/main.c#L564, 2023.

[65] Knot Resolver. worker submit. https://gitlab.nic.cz/knot/knot-
resolver/-/blob/v5.6.0/daemon/worker.c#L1694, 2023.

[66] Johannes Krupp, Ilya Grishchenko, and Christian Rossow. Amp-
Fuzz: Fuzzing for Amplification DDoS Vulnerabilities. In USENIX
Security ’22, 2022.

[67] Mikael Kullberg. Random Subdomain Attacks. https:
//www.netnod.se/sites/default/files/2016-11/mikael kullberg
random subdomain attacks.pdf, 2015.

[68] Aleksandar Kuzmanovic and Edward W Knightly. Low-Rate TCP-
Targeted Denial of Service Attacks: The Shrew vs. the Mice and
Elephants. In SIGCOMM ’03, 2003.

[69] Xiang Li, Baojun Liu, Xuesong Bai, Mingming Zhang, Qifan Zhang,
Zhou Li, Haixin Duan, and Qi Li. Ghost Domain Reloaded:
Vulnerable Links in Domain Name Delegation and Revocation. In
NDSS ’23, 2023.

[70] Xiang Li, Baojun Liu, Xiaofeng Zheng, Haixin Duan, Qi Li, and
Youjun Huang. Fast IPv6 Network Periphery Discovery and Security
Implications. In DSN ’21, 2021.

[71] Xiang Li, Chaoyi Lu, Baojun Liu, Qifan Zhang, Zhou Li, Haixin
Duan, and Qi Li. The Maginot Line: Attacking the Boundary of
DNS Caching Protection. In USENIX Security ’23, 2023.

[72] Liku Zelleke. Top 20 Best Open Source DNS Servers for (Linux
/ Windows). https://cloudinfrastructureservices.co.uk/top-20-best-
open-source-dns-servers-for-linux-windows/, 2023.

[73] Baojun Liu, Chaoyi Lu, Hai-Xin Duan, Ying Liu, Zhou Li, Shuang
Hao, and Min Yang. Who Is Answering My Queries: Understanding
and Characterizing Interception of the DNS Resolution Path. In
USENIX Security ’18, 2018.

[74] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun
Huang, and Haixin Duan. DNS Cache Poisoning Attack Reloaded:
Revolutions with Side Channels. In CCS ’20, 2020.

https://source.chromium.org/chromium/chromium/src/+/main:net/dns/
https://source.chromium.org/chromium/chromium/src/+/main:net/dns/
https://bugs.chromium.org/p/chromium/issues/detail?id=1424084
https://bugs.chromium.org/p/chromium/issues/detail?id=1424084
https://source.chromium.org/chromium/chromium/src/+/main:net/dns/dns_transaction.cc;l=340
https://source.chromium.org/chromium/chromium/src/+/main:net/dns/dns_transaction.cc;l=340
https://source.chromium.org/chromium/chromium/src/+/main:net/dns/dns_transaction.cc;l=340
https://blog.cloudflare.com/tag/ddos-reports/
https://blog.cloudflare.com/tag/ddos-reports/
https://github.com/coredns/coredns/pull/6014
https://github.com/coredns/coredns/blob/master/core/dnsserver/server.go#L34
https://github.com/coredns/coredns/blob/master/core/dnsserver/server.go#L34
https://www.dns-oarc.net/tools/fpdns
https://github.com/dnsjava/dnsjava/blob/release/3.5.x/src/main/java/org/xbill/DNS/Resolver.java#L150
https://github.com/dnsjava/dnsjava/blob/release/3.5.x/src/main/java/org/xbill/DNS/Resolver.java#L150
https://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/forward.c#l1088
https://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/forward.c#l1088
https://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/dnsmasq.c#l1060
https://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/dnsmasq.c#l1060
https://github.com/rthalley/dnspython/blob/2.3/dns/query.py#L511
https://github.com/rthalley/dnspython/blob/2.3/dns/query.py#L511
https://github.com/coredns/coredns/blob/master/plugin/forward/connect.go#L117
https://github.com/coredns/coredns/blob/master/plugin/forward/connect.go#L117
https://czds.icann.org/
https://gitlab.isc.org/isc-projects/bind9/-/issues/4005
https://gitlab.isc.org/isc-projects/bind9/-/issues/4005
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.6.0/lib/defines.h#L55
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.6.0/lib/defines.h#L55
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.6.0/daemon/main.c#L564
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.6.0/daemon/main.c#L564
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.6.0/daemon/worker.c#L1694
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.6.0/daemon/worker.c#L1694
https://www.netnod.se/sites/default/files/2016-11/mikael_kullberg_random_subdomain_attacks.pdf
https://www.netnod.se/sites/default/files/2016-11/mikael_kullberg_random_subdomain_attacks.pdf
https://www.netnod.se/sites/default/files/2016-11/mikael_kullberg_random_subdomain_attacks.pdf
https://cloudinfrastructureservices.co.uk/top-20-best-open-source-dns-servers-for-linux-windows/
https://cloudinfrastructureservices.co.uk/top-20-best-open-source-dns-servers-for-linux-windows/

[75] Keyu Man, Xinan Zhou, and Zhiyun Qian. DNS Cache Poisoning
Attack: Resurrections with Side Channels. In CCS ’21, 2021.

[76] MaraDNS. bigloop. https://github.com/samboy/MaraDNS/blob/
3.5.0035/deadwood-github/src/DwSocket.c#L1228, 2023.

[77] MaraDNS. get remote udp packet. https://github.com/
samboy/MaraDNS/blob/3.5.0035/deadwood-github/src/
DwUdpSocket.c#L1362, 2023.

[78] Florian Maury. The Indefinitely Delegating Name Servers (iDNS)
Attack. In OARC ’15, 2015.

[79] Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng
Wang, Feng Qian, Zhou Li, Sumayah Alrwais, Limin Sun, and Ying
Liu. Resident Evil: Understanding Residential IP Proxy as a Dark
Service. In S&P ’19, 2019.

[80] Microsoft. Domain Name System Docs. https://docs.microsoft.com/
en-us/windows-server/networking/dns/dns-top, 2023.

[81] Paul V. Mockapetris. RFC 1034: Domain Names - Concepts and
Facilities. RFC Internet Standard, 1987.

[82] Paul V. Mockapetris. RFC 1035: Domain Names - Implementation
and Specification. RFC Internet Standard, 1987.

[83] Giovane CM Moura, Sebastian Castro, John Heidemann, and Wes
Hardaker. TsuNAME: Exploiting Misconfiguration and Vulnerabil-
ity to DDoS DNS. In IMC ’21, 2021.

[84] Marcin Nawrocki, Mattijs Jonker, Thomas C. Schmidt, and Matthias
Wählisch. The Far Side of DNS Amplification: Tracing the DDoS
Attack Ecosystem from the Internet Core. In IMC ’21, 2021.

[85] nodejs. DNS of nodejs. https://github.com/nodejs/node/blob/main/
doc/api/dns.md, 2023.

[86] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin
Tyers, Yan Shoshitaishvili, and Adam Doupé. PhishTime: Continu-
ous Longitudinal Measurement of the Effectiveness of Anti-phishing
Blacklists. In USENIX Security ’20, 2020.

[87] OpenWrt. DNS and DHCP configuration. https://openwrt.org/docs/
guide-user/base-system/dhcp, 2023.

[88] Craig Partridge and Mark Allman. Ethical Considerations in Net-
work Measurement Papers. Communications of the ACM, 2016.

[89] Jon Postel. RFC 768: User Datagram Protocol. RFC Internet
Standard, 1980.

[90] Jon Postel. RFC 792: Internet Control Message Protocol. RFC
Internet Standard, 1981.

[91] Jon Postel. RFC 793: Transmission Control Protocol. RFC Internet
Standard, 1981.

[92] PowerDNS. PowerDNS Security Advisory 2023-02.
https://docs.powerdns.com/recursor/security-advisories/powerdns-
advisory-2023-02.html, 2023.

[93] PowerDNS Recursor. arecvfrom. https://github.com/PowerDNS/
pdns/blob/master/pdns/recursordist/pdns recursor.cc#L318, 2023.

[94] PowerDNS Recursor. recvfrom. https://github.com/PowerDNS/
pdns/blob/master/pdns/recursordist/pdns recursor.cc#L2759, 2023.

[95] PowerDNS Recursor. return. https://github.com/PowerDNS/pdns/
blob/master/pdns/recursordist/pdns recursor.cc#L2779, 2023.

[96] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern Paxson.
Temporal Lensing and Its Application in Pulsing Denial-of-Service
Attacks. In S&P ’15, 2015.

[97] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. DNSSEC
and Its Potential for DDoS Attacks: A Comprehensive Measurement
Study. In IMC ’14, 2014.

[98] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. DNSSEC
and Its Potential for DDoS Attacks: A Comprehensive Measurement
Study. In IMC ’14, 2014.

[99] RIPE. RIPE Atlas. https://atlas.ripe.net/, 2023.

[100] RouterChart. Popular Routers. https://routerchart.com/brands, 2023.

[101] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark All-
man. On Measuring the Client-side DNS Infrastructure. In IMC
’13, 2013.

[102] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark All-
man. Assessing DNS Vulnerability to Record Injection. In PAM
’14, 2014.

[103] Sooel Son and Vitaly Shmatikov. The Hitchhiker’s Guide to DNS
Cache Poisoning. In SecureComm ’10, 2010.

[104] Joe Stewart. DNS Cache Poisoning – The Next Generation. Secure-
works, 2003.

[105] systemd. systemd-resolved.service and VPNs. https://systemd.io/
RESOLVED-VPNS/, 2023.

[106] systemd-resolved. on dns packet. https://github.com/systemd/
systemd/blob/main/src/resolve/resolved-dns-transaction.c#L1406,
2023.

[107] systemd-resolved. sd event add io. https://github.com/systemd/
systemd/blob/main/src/resolve/resolved-dns-transaction.c#L1491,
2023.

[108] Technitium. Technitium Version 11.1 & 11.0.3.
https://github.com/TechnitiumSoftware/DnsServer/blob/master/
CHANGELOG.md#version-111, 2023.

[109] Technitium DNS. Help: Negative Cache. https://technitium.com/
dns/help.html, 2023.

[110] Technitium DNS. PostProcessQueryAsync. https://github.com/
TechnitiumSoftware/DnsServer/blob/v11.0.1/DnsServerCore/Dns/
DnsServer.cs#L985, 2023.

[111] Technitium DNS. ReceiveFromAsync. https://
github.com/TechnitiumSoftware/TechnitiumLibrary/blob/master/
TechnitiumLibrary.Net/SocketExtensions.cs#L113, 2023.

[112] Technitium DNS. Socket. https://github.com/dotnet/runtime/
blob/main/src/libraries/System.Net.Sockets/src/System/Net/Sockets/
Socket.cs#L118, 2023.

[113] The Guardian. DDoS Attack That Disrupted Internet Was Largest
of Its Kind in History, Experts Say. https://www.theguardian.com/
technology/2016/oct/26/ddos-attack-dyn-mirai-botnet, 2016.

[114] Unbound. comm point udp callback. https://github.com/
NLnetLabs/unbound/blob/branch-1.17.1/util/netevent.c#L934, 2023.

[115] Unbound. iter operate. https://github.com/NLnetLabs/unbound/
blob/branch-1.17.1/iterator/iterator.c#L4139, 2023.

[116] Unbound. outnet udp cb. https://github.com/NLnetLabs/unbound/
blob/branch-1.17.1/services/outside network.c#L1437, 2023.

[117] Valgrind. Valgrind. https://valgrind.org/, 2023.

[118] Chuhan Wang, YASUHIRO KURANAGA, Yihang Wang, Ming-
ming Zhang, Linkai Zheng, lixiang, Jianjun Chen, Haixin Duan,
Yanzhong Lin, and Qingfeng Pan. BreakSPF: How Shared Infras-
tructures Magnify SPF Vulnerabilities across the Internet. In NDSS
’24, 2024.

[119] Duane Wessels, William Carroll, and Matthew Thomas. RFC Draft:
Negative Caching of DNS Resolution Failures. RFC Draft, 2023.

[120] Wikipedia. List of Router Firmware Projects. https://
en.wikipedia.org/wiki/List of router firmware projects, 2023.

[121] Xinhua. Ruins of Secret Passages ... https://www.chinadaily.com.cn/
a/202301/10/WS63bcb1d5a31057c47eba8995.html, 2023.

[122] Wei Xu, Xiang Li, Chaoyi Lu, Baojun Liu, Jia Zhang, Jianjun Chen,
Tao Wan, and Haixin Duan. TsuKing: Coordinating DNS Resolvers
and Queries into Potent DoS Amplifiers. In CCS ’23, 2023.

[123] YogaDNS. Changelog: Version 1.38 (2023.05.22). https://
yogadns.com/download/, 2023.

[124] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou,
Baojun Liu, Keyu Man, Shuang Hao, Haixin Duan, and Zhiyun
Qian. Poison Over Troubled Forwarders: A Cache Poisoning Attack
Targeting DNS Forwarding Devices. In USENIX Security ’20, 2020.

https://github.com/samboy/MaraDNS/blob/3.5.0035/deadwood-github/src/DwSocket.c#L1228
https://github.com/samboy/MaraDNS/blob/3.5.0035/deadwood-github/src/DwSocket.c#L1228
https://github.com/samboy/MaraDNS/blob/3.5.0035/deadwood-github/src/DwUdpSocket.c#L1362
https://github.com/samboy/MaraDNS/blob/3.5.0035/deadwood-github/src/DwUdpSocket.c#L1362
https://github.com/samboy/MaraDNS/blob/3.5.0035/deadwood-github/src/DwUdpSocket.c#L1362
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://github.com/nodejs/node/blob/main/doc/api/dns.md
https://github.com/nodejs/node/blob/main/doc/api/dns.md
https://openwrt.org/docs/guide-user/base-system/dhcp
https://openwrt.org/docs/guide-user/base-system/dhcp
https://docs.powerdns.com/recursor/security-advisories/powerdns-advisory-2023-02.html
https://docs.powerdns.com/recursor/security-advisories/powerdns-advisory-2023-02.html
https://github.com/PowerDNS/pdns/blob/master/pdns/recursordist/pdns_recursor.cc#L318
https://github.com/PowerDNS/pdns/blob/master/pdns/recursordist/pdns_recursor.cc#L318
https://github.com/PowerDNS/pdns/blob/master/pdns/recursordist/pdns_recursor.cc#L2759
https://github.com/PowerDNS/pdns/blob/master/pdns/recursordist/pdns_recursor.cc#L2759
https://github.com/PowerDNS/pdns/blob/master/pdns/recursordist/pdns_recursor.cc#L2779
https://github.com/PowerDNS/pdns/blob/master/pdns/recursordist/pdns_recursor.cc#L2779
https://atlas.ripe.net/
https://routerchart.com/brands
https://systemd.io/RESOLVED-VPNS/
https://systemd.io/RESOLVED-VPNS/
https://github.com/systemd/systemd/blob/main/src/resolve/resolved-dns-transaction.c#L1406
https://github.com/systemd/systemd/blob/main/src/resolve/resolved-dns-transaction.c#L1406
https://github.com/systemd/systemd/blob/main/src/resolve/resolved-dns-transaction.c#L1491
https://github.com/systemd/systemd/blob/main/src/resolve/resolved-dns-transaction.c#L1491
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-111
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-111
https://technitium.com/dns/help.html
https://technitium.com/dns/help.html
https://github.com/TechnitiumSoftware/DnsServer/blob/v11.0.1/DnsServerCore/Dns/DnsServer.cs#L985
https://github.com/TechnitiumSoftware/DnsServer/blob/v11.0.1/DnsServerCore/Dns/DnsServer.cs#L985
https://github.com/TechnitiumSoftware/DnsServer/blob/v11.0.1/DnsServerCore/Dns/DnsServer.cs#L985
https://github.com/TechnitiumSoftware/TechnitiumLibrary/blob/master/TechnitiumLibrary.Net/SocketExtensions.cs#L113
https://github.com/TechnitiumSoftware/TechnitiumLibrary/blob/master/TechnitiumLibrary.Net/SocketExtensions.cs#L113
https://github.com/TechnitiumSoftware/TechnitiumLibrary/blob/master/TechnitiumLibrary.Net/SocketExtensions.cs#L113
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Net.Sockets/src/System/Net/Sockets/Socket.cs#L118
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Net.Sockets/src/System/Net/Sockets/Socket.cs#L118
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Net.Sockets/src/System/Net/Sockets/Socket.cs#L118
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://github.com/NLnetLabs/unbound/blob/branch-1.17.1/util/netevent.c#L934
https://github.com/NLnetLabs/unbound/blob/branch-1.17.1/util/netevent.c#L934
https://github.com/NLnetLabs/unbound/blob/branch-1.17.1/iterator/iterator.c#L4139
https://github.com/NLnetLabs/unbound/blob/branch-1.17.1/iterator/iterator.c#L4139
https://github.com/NLnetLabs/unbound/blob/branch-1.17.1/services/outside_network.c#L1437
https://github.com/NLnetLabs/unbound/blob/branch-1.17.1/services/outside_network.c#L1437
https://valgrind.org/
https://en.wikipedia.org/wiki/List_of_router_firmware_projects
https://en.wikipedia.org/wiki/List_of_router_firmware_projects
https://www.chinadaily.com.cn/a/202301/10/WS63bcb1d5a31057c47eba8995.html
https://www.chinadaily.com.cn/a/202301/10/WS63bcb1d5a31057c47eba8995.html
https://yogadns.com/download/
https://yogadns.com/download/

Appendix A.
Meta-Review

A.1. Summary

The paper analyzes the response pre-processing pipeline
of existing DNS resolvers, forwarders, and libraries for iden-
tifying exploitable logical vulnerabilities. Based on insights
from DNS RFCs, manual audit of open-source DNS im-
plementations, and black-box analysis of commercial DNS
resolvers, the paper discovered logical vulnerabilities in
DNS deployments that can result in the following three types
of attacks: DNS cache poisoning; Denial-of-Service (DoS);
and resource exhaustion attacks. The discovered attacks are
responsibly disclosed to the relevant vendors and have been
assigned CVEs.

A.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

1) The paper identified new logical vulnerabilities in the
DNS resolution pipeline that can result in cache poi-
soning and DoS in DNS resolvers, libraries, and for-
warders.

2) The paper has performed a large-scale evaluation (e.g.,
1.8 million open resolvers) and identified vulnerabil-
ities in a wide variety of products, including popular
Wi-Fi routers, router OSes, public DNS services, and
open DNS resolvers.

3) The paper’s evaluation has followed the community
recommendations of carrying out vulnerability research
on deployed systems, and the resulting findings have
been responsibly disclosed and acknowledged.

A.4. Noteworthy Concerns

1) Although all three identified attacks have severe reper-
cussions, two of them require making strong assump-
tions about the attacker’s capabilities. Concretely, the
resource consumption attack in the paper requires an
on-path attacker whereas the cache poisoning attack
requires the victim to disable DNSSEC validation and
0x20 encoding.

Appendix B.
Response to the Meta-Review

Thank our anonymous reviewers and shepherd for their
insightful comments. We concur with the reviewers on the
content of this meta-review. With regard to the notewor-
thy concerns, we acknowledge certain requirements of our
attacks. In detail, the resource consumption attack needs
attackers to obtain the DNS query on his or her own name-
server to return a malformed response. The cache poisoning
attack requires the resolver to disable DNSSEC validation
and 0x20 encoding like all DNS cache poisoning attacks.

	Introduction
	Background
	DNS Overview
	DNS Resolution Mechanisms
	ICMP Messages and Impact

	TuDoor Attack Overview
	Threat Model
	Attack Workflow

	Systematic Analysis of DNS Response Pre-processing
	Generic Workflow of DNS Response Pre-processing
	Software Implementations of DNS Response Pre-processing
	Novel Logic Vulnerabilities in DNS Response Pre-processing

	Three TuDoor Attacks
	DNSPoisoning Attack (Cache Poisoning)
	DNSDoS Attack (Denial-of-Service)
	DNSConsuming Attack (Resource Consuming)
	Comparison with Prior Attacks

	Vulnerable Resolvers in the Wild
	Wi-Fi Routers and Router-OSes
	Public DNS Services
	Open DNS Resolvers

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix B: Response to the Meta-Review

