
Talking with Familiar Strangers: 
An Empirical Study on HTTPS Context Confusion Attacks

Mingming Zhang1, Xiaofeng Zheng1, Kaiwen Shen, Ziqiao Kong, Chaoyi Lu, 
Yu Wang, Haixin Duan, Shuang Hao, Baojun Liu and Min Yang 

1

Email: zmm18@mails.tsinghua.edu.cn



Client Server

1. Request http://example.com 2. Request https://example.com

3. Server answers with https://example.com4. Attacker answers with http://example.com
and replaces the HTTPS urls

Secure channel is set between 
Attacker and Server.

Plaintext

HTTPS Man-in-the-middle (MITM) Attacks 

• SSL Strip Attack (Moxie Marlinspike,  2009)
• Intercept the initial HTTP connection
• Replace the secure links returned by the server with plaintext ones
• Downgrade the SSL channel

2



• Mitigation
• Enforce HSTS policy
• Browser UI security indicators

HTTPS Man-in-the-middle (MITM) Attacks 

3



With these security policies being 
well-deployed on one website,
the HTTPS-protected websites are secure enough

4



Demo: Payment Hijacking on JD Shopping

JD Shopping is a large online shopping website in China (Alexa Rank 10) 5



Demo: Payment Hijacking on JD Shopping

6

SCC Attack
• Unnoticeable to users
• Undetectable to browsers

The certificate chain is 
valid and trusted



Demo: Payment Hijacking on JD Shopping

6

How?🤔

SCC Attack
• Unnoticeable to users
• Undetectable to browsers

The certificate chain is 
valid and trusted



• One certificate for multiple domains
• Multi-domain and Wildcard certificates

• Multiple servers with one certificate
• Sharing the same certificate is common (e.g., CDN nodes, virtual hosts, associated 

services, commercial cooperation parties)

Certificate Sharing

7



Certificate Sharing

Authenticate Server’s Identity

SSL Certificate

8

Client

Server2



Certificate Sharing

Authenticate Server’s Identity

8

Share

Client

Server2Server1 Server3



Certificate Sharing

• The shared TLS certificates lead to security dependencies 
among different servers/parties.

8

Authenticate Server’s Identity
Client

Dependency Dependency

Share

Server2Server1 Server3



Certificate Sharing

• The shared TLS certificates lead to security dependencies 
among different servers/parties.

8

Authenticate Server’s Identity
Client

Dependency Dependency

Share

Weak security practice

Can be attacked



Client
Server A

(a.example.com, a.a.a.a)

Server B
(b.example.com, b.b.b.b)

* .example.com

Attack Flow

MITM

9



Locate in the same LAN
Client Server A

(a.example.com, IPA)

1. A victim user who 
browses a Server A.

2. Website A, enforcing the best 
security practices (e.g., HSTS)

3. MITM Attacker (e.g., in 
the ethernet, home routers, 
gateways, proxies, ISPs) 

Attacker

Server B
(b.example.com, IPB)

4. Website B with flawed 
security policies

* .example.com

Share one SSL certificate

Attacker’s Goal:
Exploit flawed configurations of Server B to intercept an 
HTTPS connection between the client and a well-
configured Server A 

Attack Flow

9



Client
Server A

(a.example.com, a.a.a.a)

① Request https://a.example.com
Dst-ip: a.a.a.a
Host: a.example.com

Server B
(b.example.com, b.b.b.b)

* .example.com

Attack Flow

MITM

9



② Reroute the request to ServerB
Dst-IP: b.b.b.b
Host: a.example.com

Client

① Request https://a.example.com
Dst-ip: a.a.a.a
Host: a.example.com

MITM

* .example.com

Attack Flow

Server A

(a.example.com, a.a.a.a)

Server B
(b.example.com, b.b.b.b) 9



Client
MITM

Server B
(b.example.com, IPB)

② Reroute the request to ServerB
Dst-IP: b.b.b.b
Host: a.example.com

* .example.com

Attack Flow

• Does not check Host strictly.
• Uses vulnerable response headers.

Server A

(a.example.com, a.a.a.a)

① Request https://a.example.com
Dst-ip: a.a.a.a
Host: a.example.com

9



③ Flawed response 
headers from ServerB

(e.g., insecure 302 redirect)

Client
MITM

Server B
(b.example.com, IPB)

* .example.com

* .example.com

Attack Flow

② Reroute the request to ServerB
Dst-IP: b.b.b.b
Host: a.example.com

Server A

(a.example.com, a.a.a.a)

① Request https://a.example.com
Dst-ip: a.a.a.a
Host: a.example.com

9

• Does not check Host strictly.
• Uses vulnerable response headers.



④ Enforce the vulnerable 
policies of ServerB for 
ServerA

Client
MITM

Server B
(b.example.com, IPB)

③ Flawed response 
headers from ServerB

* .example.com

* .example.com

Attack Flow

② Reroute the request to ServerB
Dst-IP: b.b.b.b
Host: a.example.com

Server A

(a.example.com, a.a.a.a)

① Request https://a.example.com
Dst-ip: a.a.a.a
Host: a.example.com

9

• Does not check Host strictly.
• Uses vulnerable response headers.



HTTPS MITM attacks leveraging shared TLS certificates
• Goal: Exploit flawed configurations of Server B to intercept an HTTPS 

connection between the client and a well-configured Server A. 
• Looking from client-side
• Client is actually talking with Server B (not Server A)
• Can not be detected by browsers
• Secure browsing context confusion for programs and users

HTTPS Context Confusion Attack (SCC Attack)

10



SCC Attack

HTTPS Downgrading Attack

HSTS Bypassing Attack

One-shot Downgrade (Down-1) 

Multi-hops Downgrade (Down-2)     

Clear HSTS Policy (HSTS-1)

Cancel HSTS for Subdomain (HSTS-2)

Decrease HSTS Validity Period (HSTS-3)

Types of SCC Attack

Downgrade HTTPS to HTTP using the 
insecure 3xx redirects from ServerB

Bypass HSTS Policy using flawed Strict-Transport-
Security (STS) headers from ServerB.

11



AttackerClient ServerB
(b.example.com, IP2)

Request https://a.example.com

ServerA
(a.example.com, IP1)

Attacker reroutes the 
request to ServerB

Type 1:  HTTPS Downgrading Attack
Downgrading HTTPS to HTTP using insecure 3xx redirects

SCC Attack: Bypassing HTTPS Security Policies

12



AttackerClient ServerB
(b.example.com, IP2)

Request https://a.example.com

ServerA
(a.example.com, IP1)

HTTP/1.1 302 Moved Temporarily
Server: Apache

Location: http://b.example.com
…Response: insecure 302 redirect

Flawed response 
headers from ServerB

SCC Attack: Bypassing HTTPS Security Policies

Type 1:  HTTPS Downgrading Attack
Downgrading HTTPS to HTTP using insecure 3xx redirects

12



AttackerClient ServerB
(b.example.com, IP2)

Request https://a.example.com

http://b.example.com/<path>

ServerA
(a.example.com, IP1)

HTTP/1.1 302 Moved Temporarily
Server: Apache

Location: http://b.example.com
…Response: insecure 302 redirect

SCC Attack: Bypassing HTTPS Security Policies

Type 1:  HTTPS Downgrading Attack
Downgrading HTTPS to HTTP using insecure 3xx redirects

👿

HTTPS

HTTP
12



Type 2:  HSTS Bypassing Attack
Bypassing HSTS Policy using flawed Strict-Transport-Security (STS) header.

Strict-Transport-Security: 
max-age=15552000; includeSubDomains; preload

Server: specify HSTS Policy by STS Header

SCC Attack: Bypassing HTTPS Security Policies

Browser: enforce HSTS Policy for the Server

13



Strict-Transport-Security: max-age=0

Flawed STS Header of ServerB

Strict-Transport-Security: max-age=<smaller-than-ServerA>

Strict-Transport-Security: <no includeSubdomain>

Browser Action

Cancel HSTS Policy for ServerA’s Subdomains (HSTS-2)

Clear HSTS Policy for ServerA (HSTS-1)

Decrease HSTS Validity Period for ServerA (HSTS-3).

SCC Attack: Bypassing HTTPS Security Policies

Type 2:  HSTS Bypassing Attack
Bypassing HSTS Policy using flawed Strict-Transport-Security (STS) header.

13



Real-world Attacks

1. Downgrade a new HTTPS connection.

Attacker replaces 
the download file.

Xiami Music Website is a freemium music streaming services owned by Alibaba Group 14



2.  Downgrade an already-established HTTPS connection

Case c: hijack a specific request in the secure context
persistent encrypted connection

Request https://a.com/path/to/resource1

. . .
Request https://a.com/3

RST

Request https://a.com/path/to/resource2

c1. Identify target packet

Client Attacker
Server A (IPA)

a.example.com
Server B (IPB)

b.example.com

Real-world Attacks

15



Case c: hijack a specific request in the secure context
persistent encrypted connection

Flawed response

. . .

RST

Re-handshake

c1. Identify target packet

c2. Redirect to Server B . . .

Attacker takes actions

Client Attacker
Server A (IPA)

a.example.com
Server B (IPB)

b.example.com

TLS Re-handshake

Request https://a.com/path/to/resource1

Request https://a.com/3

Request https://a.com/path/to/resource2

2.  Downgrade an already-established HTTPS connection

Real-world Attacks

15



2. Downgrade an already-established HTTPS connection
• TLS Re-handshake (triggered by TCP RST or Timeout)

Trigger Method Browser Windows MacOS Linux

RST

Chrome ✔ ✔ ✔

Firefox ✔ ✔ ✔

Edge ✔ - -
Safari - ✔ -

Timeout

Chrome ✔

Firefox ✔

Edge - -
Safari - -

Table 1. Browser re-handshake behaviors

The cases with ✓can be exploited by attackers to trigger re-handshakes successfully.

Real-world Attacks

16



Vulnerable Servers in the Wild

• Measurement on Alexa Top 500 domains and all their subdomains

Finding 1:  2,918 (8.50%) subdomains under 126 (25.2%) Alexa Top 500 
base domains are vulnerable to SCC attacks.

17



• Measurement on Alexa Top 500 domains and all their subdomains

Finding 2: Popular applications could be affected by SCC attacks.

Possible Attacks

• Online Payment Hijacking
• Download Hijacking
• Website Phishing

Vulnerable Servers in the Wild

18



• Measurement on Alexa Top 500 domains and all their subdomains

Finding 3: Certificate Sharing is prevalent, which could be vulnerable 
due to security dependencies among domains.

Vulnerable Servers in the Wild

19



• Measurement on Alexa Top 500 domains and all their subdomains

Vulnerable Servers in the Wild

If the domains at the convergent 
nodes are vulnerable, there will be 
potential security threats for those 
around them.

19

Finding 3: Certificate Sharing is prevalent, which could be vulnerable 
due to security dependencies among domains.



• Measurement on Alexa Top 500 domains and all their subdomains

Vulnerable Servers in the Wild

If the domains at the convergent 
nodes are vulnerable, there will be 
potential security threats for those 
around them.

Over 900 FQDNs depend on 
pages.ebay.com.

19

Finding 3: Certificate Sharing is prevalent, which could be vulnerable 
due to security dependencies among domains.



Discussion

• Root Causes
• Security dependencies caused by Certificate Sharing.
• Problematic implementations of security policies among different parties.

• Mitigation
• Add a notification for the insecure changes of context.
• Well-configure the security policies (e.g., HSTS, CSP, Default 302 Redirect).
• Block all mixed contents. （e.g., plans of Chrome1 and Firefox2 ）

1 https://www.gsqi.com/marketing-blog/google-chrome-block-mixed-content/
2 https://support.mozilla.org/en-US/kb/mixed-content-blocking-firefox

20



Thank You.

Q & A

{zmm18, zxf19}@mails.tsinghua.edu.cn


